

Stream Mode Compression Using Deflate

Note 1.— The Deflate algorithm was originally specified in IETF RFC 1951 and through example ‘C’ code available from the algorithm’s authors.

Note 2.— The Deflate algorithm is a combination of two public domain and well known data compression algorithms. These are the LZ77 algorithm (Lempel-Ziv 1977) and Huffman Codes. LZ77 removes redundancy in the data stream by replacing re-occurring strings by backward references to previous occurrences of such strings. Huffman Codes are variable length symbols that are used to compress strings of fixed length symbols. The Huffman Codes are chosen such that frequently occurring symbols are replaced by shorter bitstrings whilst rarely occurring symbols are replaced by longer bitstrings. They are also chosen such that no code is the prefix of another code in the same set of Huffman Codes. In Deflate, the uncompressed data is first compressed using LZ77 and the result of this compression stage is further compressed using a set of standard Huffman Codes in order to compress both the literal value of strings for which no backward reference can be given, and the backward references themselves.

Note 3.— Deflate further optimises the data compression by monitoring the stream of uncompressed data and dynamically generating a set of more optimal Huffman Codes. These can be communicated to the receiver at any time and used to improve the compression ration.

Note 4.— The Deflate specification also permits the compressor, when it detects an uncompressible string, to send that string as plain text.

Service Description

Note. — The Deflate encoder operates on NPDUs submitted via the SN-Service and after compression by the LREF function if used. The Deflate decoder operates on data packets received from the subnetwork service provided by ISO 8208. The decoded NPDUs may then be further decompressed by the LREF compression procedures, if in use, or passed to the SN-Service user. The positioning of the Deflate encoder and decoder is illustrated in Figure 5.7-8.

Figure 5.7-8 Relationship of the Deflate Encoder and Decoder to ISO/IEC 8208 and LREF Functions

� EINBETTEN PowerPoint.Slide.7 ���

When the use of the Deflate algorithm has been proposed in the Call Request User Data and either implicitly accepted by Call Acceptance in the absence of the Fast Select procedures, or explicitly accepted in the Call Accept, when Fast Select is in use, then user data on all subsequent data packets shall be encoded using this algorithm.

Note.— ISO 8208 packets other than data packets may also contain user data. The above requirement excludes the encoding of user data on control packets as they may be delivered out of sequence.

Encoded Packet Format

Each NPDU shall be encoded into the compressed representation shown in Figure 5.7-9. The compressed packet format shall comprise:

The Encoded Data

A two octet Frame Check Sum (FCS).

Note.— The length of the encoded data need not be explicitly specified as the encoded block is delimited by ISO/IEC 8208.

Figure 5.7-9 Compressed Packet Format

� EINBETTEN PowerPoint.Slide.7 ���

The sender shall ensure that the encoded representation of an NPDU is complete, i.e. that the receiver can recover the original NPDU without requiring information contained in any subsequent packets.

Note.— In IETF RFC 1951, an encoded data stream may comprise an arbitrary number of compressed blocks. This is also true for this specification. The purpose of the Deflate Data Blocks is to delimit the scope of uncompressed data strings, strings compressed using the standard set of Huffman Codes and those compressed using dynamically determined Huffman Codes. The compressor may decide to change between either one of these strategies at any time and not just at an NPDU boundary. A compressed NPDU will always start at a Deflate Data Block boundary and end at the end of a Deflate Data Block.

The encoded representation of the NPDUs shall be a data stream that is subdivided into a number of bit aligned blocks of arbitrary length. Each such block shall be in the format shown in Figure 5.7-10.

Figure 5.7-10 Format of Deflate Data Blocks

� EINBETTEN PowerPoint.Slide.7 ���

Each Deflate Data Block shall comprise:

A 3 bit header (H)

A stream of self-delimited compressed data.

The first bit of the 3 bit header (i.e. the first bit transmitted) shall always be set to zero.

Note.— In IETF RFC 1951, setting the first bit to one indicates that it is the last block in an encoded data stream. This semantic is not required by this specification, as the end of a subnetwork connection fulfils this requirement.

The remaining two bits of the header shall be used to indicate the compression type according to Table 5.7-13:

Table 5.7-13 Compression Type Identifiers (bits shown in transmission order)

Encoding�Compression Type��00 �no compression��01�compressed with fixed Huffman codes��10�compressed with dynamically determined Huffman Codes��11�reserved��The last Deflate Data Block in a compressed packet shall be right padded with zero bits to the next octet boundary.

Uncompressed Deflate Data Blocks

When the encoder determines that no benefit can be derived by data compression of a given string, then that string shall be sent uncompressed.

The 3 bit header shall be right padded with zeroes to the next octet boundary, and the remainder of the encoded data shall be formatted as shown in Figure 5.7-11.

Figure 5.7-11 Format of Uncompressed Deflate Data Blocks

� EINBETTEN PowerPoint.Slide.7 ���

An Uncompressed Deflate Data Block shall comprise:

An unsigned 16-bit length indicator (LEN), giving the number of octets of literal data in the block;

The ones complement of the 16-bit length indicator (NLEN);

The Literal Data.

The two length fields (LEN and NLEN) shall be encoded and sent least significant octet first.

The literal data shall be encoded in the same byte order as encountered in the uncompressed data stream.

Note 1.— The procedures by which the encoder determines that there is no benefit in compressing an NPDU are outside of the scope of this specification.

Note 2.— Even though the string is not compressed, this does not prevent the data in this block being referenced as part of the data stream by a subsequent LZ77 encoded NPDU.

Compressed Deflate Data Blocks using Fixed Huffman Codes

Note.— Encoded data blocks in the "Deflate" format consist of sequences of symbols drawn from three conceptually distinct alphabets: either literal bytes, from the alphabet of byte values (0..255), or <length, backward distance> pairs, where the length is drawn from (3..258) and the distance is drawn from (1..32,768). The literal and length alphabets are merged into a single alphabet (0..285), where values 0..255 represent literal bytes, and values 257..285 represent length codes (possibly in conjunction with extra bits following the symbol code). The value 256 indicates end-of-block and the block is hence self-delimiting without requiring an explicit length indicator.

A compressed NPDU shall be sent as a bit stream of bit aligned symbols (the Huffman Codes representing literal values or length distance pairs), starting with the first bit transmitted after the 3 bit header.

The Huffman Codes used to encode the literal/length code in the LZ77 compressed data stream shall be as specified in Table 5.7-14.

Note.— Although Table 5.7-14 includes values 286 and 287, these are not used by the compression algorithm and are included only for completeness of the set of valid Huffman Codes.

Table 5.7-14 Huffman Codes Used for Deflate

Value�Code Length (Bits)�Huffman Code��0 - 143�8�00110000 through 10111111��144 - 255�9�110010000 through 111111111��256 - 279�7�0000000 through 0010111��280 - 287�8�11000000 through 11000111��Huffman encoded values 0 to 255 inclusive shall represent literal values, i.e. each single octet value of a literal string shall be encoded using these symbols.

Note 1.— The term “Huffman Encoded Value” is used to identify a symbol value that is represented by a Huffman code taken from Table 5.7-14. For example, the “Huffman Encoded Value 145” is encoded as a 9 bit bitstring “110010001”.

Note 2.— In IETF 1951, the value 256 indicates end-of-block. However, this value is not required in this specification as each block is delimited by ISO/IEC 8208. By not using this value, the size of the compressed data stream is reduced.

The Huffman codes shall be encoded (packed) into the compressed data block, most significant bit first.

Length/Distance Codes

Huffman encoded values in the range 257 to 285 shall represent a length code and shall always be followed by an associated distance code.

Each length code shall represent a particular string length, as specified in Table 5.7-15.

Extra Bits

Where a non-zero “Extra bit” is specified for a given code, then a range of length values is represented by the length indicator, and the encoded representation of the length indicator shall be followed by exactly that number of additional bits.

The extra bits shall be interpreted as an integer stored with the most-significant bit first.

Note.— For example, bits 1110 represent the value 14.

The value of the extra bits shall be added to the first length value in the range identified by such Length Code in order to determine the actual string length.

Note 1.— For example, Length Code 277 is followed by four extra bits. If these are 1110 then the actual string length indicated is 81.

Note 2.— Extra bits are not encoded as Huffman Codes.

Table 5.7-15 String Length Code Values

 Code�Extra Bits�Length(s)�Code�Extra Bits�Lengths�Code�Extra Bits�Length(s)��257�0�3�267�1�15,16� 277�4�67-82��258�0�4�268�1�17,18� 278�4�83-98��259�0�5�269�2�19-22� 279�4�99-114��260�0�6�270�2�23-26� 280�4�115-130��261�0�7�271�2�27-30� 281�5�131-162��262�0�8�272�2�31-34� 282�5�163-194��263�0�9�273�3�35-42� 283�5�195-226��264�0�10�274�3�43-50� 284�5�227-257��265�1�11,12�275�3�51-58� 285�0�258��266�1�13,14�276�3�59-66�����

Distance Codes

Each length code in the encoded data stream shall be followed by a Huffman Encoded distance code according to Table 5.7-16.

In this block format, the Huffman Codes for the distance codes shall be the 5 bit value of the distance code completed with leading zero bits.

Note.— As this implies, the distance codes are assumed to each have the same probability of occurrence and hence there is no possibility of compression using Huffman Codes.

Extra Bits

Where a non-zero “Extra bit” is specified for a given distance code, then a range of distances is represented by the distance code, and the encoded representation of the length indicator shall be followed by exactly that number of additional bits.

The extra bits shall be interpreted as an integer stored with the most-significant bit first.

Note.— For example, bits 1110 represent the value 14.

The value of the extra bits shall be added to the first distance value in the range identified by such a distance code in order to determine the actual string length.

The semantic of the distance value shall be the string (of length given by the length indicator) in the previously received data, at exactly the number of octets given by the distance value from the current position.

Note1 .— For example, the most recently received octet has a distance of one from the current position.

Note 2.— It is therefore possible under this specification to refer to a previously occurring string within the previous 32KB of data transmitted.

A backward reference shall not refer to a string on any other subnetwork connection, or transmitted before a network reset has been performed.

Note 1.— A string reference may refer to a string in a previous block; i.e., the backward distance may cross one or more block boundaries. However a distance cannot refer past the beginning of the subnetwork connection, or since the most recent network service reset due to the fact that the receiving user may not have received those blocks transmitted immediately prior to a reset.

 Note2.— The referenced string may overlap the current position; for example, if the last 2 bytes decoded have values X and Y, a string reference with <length = 5, distance = 2> adds X,Y,X,Y,X to the output stream.

Table 5.7-16 Distance Codes

Code �Extra Bits�Dist�Code�Extra Bits�Dist�Code�Extra Bits�Dist��0�0�1�10�4�33-48�20�9�1025-1536��1�0�2�11�4�49-64�21�9�1537-2048��2�0�3�12�5�65-96�22�10�2049-3072��3�0�4�13�5�97-128�23�10�3073-4096��4�1�5,6�14�6�129-192�24�11�4097-6144��5�1�7,8�15�6�193-256�25�11�6145-8192��6�2�9-12�16�7�257-384�26�12�8193-12288��7�2�13-16�17�7�385-512�27�12 �12289-16384��8�3�17-24�18�8�513-768�28�13 �16385-24576��9�3�25-32�19�8�769-1024�29�13 �24577-32768��

If the last Deflate Data Block to encode an NPDU is in this format and, after any right padding with zero bits to the next octet boundary, the last octet is found to be all zero bits, then this octet shall be removed and not included in the compressed block.

Note.— As the Huffman Code for Literal/Length value 256 (end of block) is seven zero bits in this format and the block is also right padded with zero bits, this situation is highly likely to occur. As the decompressor can always appended a zero octet to the block without compromising the integrity of the decompression process (which always stops when the end of block marker is encountered, this procedure will regularly remove an additional octet from each encoded NPDU without data loss.

Compressed Deflate Data Blocks using Dynamically Determined Huffman Codes

Note 1.— The fixed set of Huffman Codes represent an initial “guess” as to the entropy of the original data stream and hence what are the optimal Huffman Codes. However, it is likely that analysis of an actual data stream will reveal a more appropriate set. This specification allows for this by providing a means to communicate a set of dynamically determined Huffman Code Tables from compressor to decompressor and to identify the scope of applicability for those codes. This is achieved through the Deflate Data Block format specified in this section. The data block includes a new set of Huffman Code Tables at the beginning of the block and the remainder of the block comprises a compressed LZ77 data stream, compressed using these Huffman Code Tables.

Note 2.— In order to avoid the overhead of exchanging the actual Huffman Code Tables, the Huffman Codes are required to comply with a set of rules that permits a Huffman Code Tables to be generated from knowledge of the code lengths and the encoded alphabet only. As the alphabet is known by the decompressor a priori, only the code lengths have to the communicated.

Note 3.— A further level of compression is achieved by encoding the lists of code lengths as Huffman Codes. The Huffman Codes for the code lengths are themselves communicated at the start of this Deflate Data Block format, and by communicating their code lengths only.

Note 4.— The mechanism by which the compressor decides to make use of dynamically determined Huffman Codes is outside of the scope of this specification.

The Huffman codes used for each alphabet in the "deflate" format shall obey the following rules:

All codes of a given bit length have lexicographically consecutive values, in the same order as the symbols they represent;

Shorter codes lexicographically precede longer codes.

Block Format

The format of a Deflate Data Block using Dynamically Determined Huffman Codes shall comprise the following bit aligned fields starting immediately after the 3 bit header, and encoded consecutively:

Bits: “HLIT” - number of Literal/Length codes - 257 (257 - 286)

Bits: “HDIST” - number of Distance codes - 1 (1 - 32)

Bits: “HCLEN” - number of Code Length codes - 4 (4 - 19)

(HCLEN + 4) x 3 bits: code lengths for the code length alphabet given just above, in the order: 16, 17, 18,0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15

Note 1.— The code lengths are interpreted as 3-bit integers (0-7); as above, a code length of 0 means the corresponding symbol (literal/length or distance code length) is not used.

HLIT + 257 code lengths for the literal/length alphabet, encoded using the code length Huffman code

HDIST + 1 code lengths for the distance alphabet, encoded using the code length Huffman code

The actual compressed data of the block, encoded using the literal/length and distance Huffman codes defined in the first part of this block.

The literal/length symbol 256 (end of data), encoded using the literal/length Huffman code

Note 2.— The code length repeat codes can cross from HLIT + 257 to the HDIST + 1 code lengths. In other words, all code lengths form a single sequence of HLIT + HDIST + 258 values.

Decoding of Dynamically Determined Huffman Codes

Note.— The following algorithm generates the Huffman Codes from the encoded bit length codes as integers, intended to be read from most- to least-significant bit. A version of this algorithm expressed in ‘C’ code may be found in IETF RFC 1951

Dynamically determined Huffman codes shall be decoded as follows:

1) Count the number of codes for each code length.

2) Find the numerical value of the first code for each code length, by apply the rule that no Huffman Code in the same table can be the prefix of another. For the smallest code length this is zero. For each subsequent code length, this is determined by identifying the next unallocated code for the preceding code length (by adding the number of codes to the first code) and, then representing the result as a binary number, and right padding the number with zero bits so that the number has the same number of bits as required by the code length.

3) Assign numerical values to all codes, using consecutive values for all codes of the same length with the base values determined at step 2. Codes that are never used (which have a bit length of zero) must not be assigned a value.

Note.— For example, consider the alphabet ABCDEFGH with code lengths defined to be (3,3,3,3,3,2,4,4). Applying the above algorithm would generate the following Huffman Codes for each member of the alphabet:

Symbol�Length�Code��A�3�010��B�3�011��C�3�100��D�3�101��E�3�110��F�2�00��G�4�1110��h�4�1111��

Frame Check Sum (FCS)

A two octet, octet aligned, frame checksum shall be appended to the end of each encoded packet.

The frame check sum shall be computed according to the same procedures as specified in ISO/IEC 8073 for computation of the transport protocol class 4 checksum.

The checksum shall be computed on the NPDU prior to application of the Deflate data compression procedure, i.e. it is a checksum on the uncompressed NPDU.

Note.— The Frame Check Sum may be used by the decompression procedure to verify correct decompression of the NPDU.

Compression Procedure

Each NPDU received from the SN-Service User, possibly after compression by the LREF algorithm, shall be encoded into a single compressed data block in the format given by Figure 5.7-10 and specified in section 5.7.6.5.1.4 above. The resulting data block shall be a complete encoded representation of the NPDU.

Recommendation.— An implementation should use the full 32KB range of distance values permitted by the compressed data format .

Note 1.— This permits an implementation to autonomously limit the size of the backwards window used to compress data in order to optimise the use of memory resources. However, the result will be a poorer compression ratio. On the other hand, the decompressor must always be able to accept any valid distance value.

Note 2.— he actual procedure by which an implementation locates matches for strings in previously sent data, or even the length of the strings it looks for, is out of the scope of this specification.

NPDU Encoding

The NPDU shall be encoded in the same sequence in which it would have been transmitted if it had not been compressed.

Octet sequences for which no preceding match is found shall be encoded as literal values using their corresponding Huffman codes (i.e. Huffman Codes representing values in the range 0..255).

Octet sequences for which a match has been found within the last 32KB of encoded data shall be encoded as length/distance pairs.

The length of the octet string shall be encoded first, where necessary followed by the appropriate extra bits needed to fully define the length value.

The distance to the duplicate string shall similarly be encoded using Huffman Code specified in Table 5.7-15 for the required distance, where necessary also followed by the appropriate extra bits needed to fully define the distance.

The Huffman Codes used shall be defined by the type of Deflate Data Block (i.e. using the set of Fixed Huffman codes or a dynamically determined set).

NPDUs shall be compressed and passed to the ISO/IEC 8208 subnetwork in exactly the same order that they were given to the Deflate compression function by the SN-Service User.

When all octets in the NPDU have been encoded, the bit stream shall be padded with zero bits until the next octet boundary is reached.

The Frame Check Sum (FCS) shall then be appended to the compressed block.

Note.— The FCS is encoded as its binary value. It is not subject to Huffman Encoding.

Decompression Procedures

NPDUs shall be decompressed in exactly the same order that they have been received from the ISO/IEC 8208 subnetwork.

Each data packet received from an ISO/IEC 8208 subnetwork shall be assumed to be in the format given by Figure 5.7-9, and comprises one or more Deflate Data Blocks.

Compressed Deflate Data Block

Each compressed Deflate Data Block shall be interpreted as a sequence of Huffman encoded symbols.

Huffman Encoded Values in the range 0..255 shall be taken as literal octet values and appended to the NPDU that is being decompressed in the order that they are found.

Huffman Encoded Values in the range 257..285 shall be taken as length indicators and as introducing a length/distance pair.

The length and distance values shall be decoded and the referenced string shall be appended to NPDU that is being decompressed.

Uncompressed Deflate Data Block

Octets from uncompressed Deflate Data Blocks shall be appended to the NPDU in the order in which they are encoded.

If the last Deflate Data Block in a compressed NPDU uses the fixed Huffman Codes, then it shall always be right padded with a zero octet before decompression.

Note.— The referenced string may be anywhere in the preceding 32KB of decoded octets, including uncompressed NPDUs, and not just in the current NPDU.

FCS Verification

The Frame Check Sum for the uncompressed NPDU shall be the last two octets of the received packet and shall be verified for all received NPDUs.

If this verification check fails, then the NPDU shall be discarded and a Network Reset initiated on the ISO/IEC 8208 subnetwork connection.

In this case, the history compression window shall be reset to the initial state.

Note.— As the sender is not permitted to reference strings prior to a network reset, this procedure ensures that a backwards reference cannot be made into a corrupt NPDU.

Recommendation.— The error should be notified to System Management.

Call Reset Provisions

If at any time, a Reset Indication is received indicating a DCE originated reset, then this shall be confirmed and all other procedures associated with the Call Reset performed.

If at any time, a Reset Indication is received indicating a DTE originated reset, then additionally the history compression window shall be reset to the initial state.

Note. — The history decompression window does not need to be cleared because deflate will never refer to any prior history (‘deflate’ is a sliding-window compressor).

Page � SEITE * FORMATVERBINDEN �
7
�

