	ATNP/WG3/SG3 (Architecture)

Version 1.0
5 February 1996
�PRIVE ��

Sub Group 3 (Upper Layer Architecture)

AERONAUTICAL TELECOMMUNICATION NETWORK PANEL

Proposed Text for
Guidance Material - Annexes A & B

�
TABLE OF CONTENTS

� TM \o "1-2" �1. PDU Definitions and Supporting ASN.1 Types	� BOUTONATTEINDRE _Toc347138050 � RENVOIPAGE _Toc347138050 �3��
1.1 ACSE Definitions	� BOUTONATTEINDRE _Toc347138051 � RENVOIPAGE _Toc347138051 �3��
1.2 Presentation Layer Definitions	� BOUTONATTEINDRE _Toc347138052 � RENVOIPAGE _Toc347138052 �5��
1.3 Session Layer Definitions	� BOUTONATTEINDRE _Toc347138053 � RENVOIPAGE _Toc347138053 �9��
1.4 ASN.1 EXTERNAL Type Definition	� BOUTONATTEINDRE _Toc347138054 � RENVOIPAGE _Toc347138054 �12��
1.5 Definition of Object Identifiers	� BOUTONATTEINDRE _Toc347138055 � RENVOIPAGE _Toc347138055 �12��
2. Connection Oriented Upper Layer Overheads	� BOUTONATTEINDRE _Toc347138056 � RENVOIPAGE _Toc347138056 �13��
2.1 Connection Establishment (Request)	� BOUTONATTEINDRE _Toc347138057 � RENVOIPAGE _Toc347138057 �13��
2.2 Connection Establishment (Response)	� BOUTONATTEINDRE _Toc347138058 � RENVOIPAGE _Toc347138058 �16��
2.3 Connection Termination (Request)	� BOUTONATTEINDRE _Toc347138059 � RENVOIPAGE _Toc347138059 �19��
2.4 Connection Termination (Response)	� BOUTONATTEINDRE _Toc347138060 � RENVOIPAGE _Toc347138060 �20��
2.5 Data Transfer Phase	� BOUTONATTEINDRE _Toc347138061 � RENVOIPAGE _Toc347138061 �21��
3. User-Data and User-Information	� BOUTONATTEINDRE _Toc347138062 � RENVOIPAGE _Toc347138062 �24��
3.1 Association-information (ASN.1/BER Encoded)	� BOUTONATTEINDRE _Toc347138063 � RENVOIPAGE _Toc347138063 �24��
3.2 Presentation User-data (ASN.1/BER Encoded)	� BOUTONATTEINDRE _Toc347138064 � RENVOIPAGE _Toc347138064 �25��
3.3 Association-information (ASN.1/PER Encoded)	� BOUTONATTEINDRE _Toc347138065 � RENVOIPAGE _Toc347138065 �25��
4 Presentation User-data (ASN.1/PER Encoded)	� BOUTONATTEINDRE _Toc347138066 � RENVOIPAGE _Toc347138066 �26��
4. Additional Options	� BOUTONATTEINDRE _Toc347138067 � RENVOIPAGE _Toc347138067 �27��
1 Effect of Basic Addressing Information	� BOUTONATTEINDRE _Toc347138068 � RENVOIPAGE _Toc347138068 �27��
2 Effect of Additional Abstract Syntaxes	� BOUTONATTEINDRE _Toc347138069 � RENVOIPAGE _Toc347138069 �28��
5. Summary	� BOUTONATTEINDRE _Toc347138070 � RENVOIPAGE _Toc347138070 �28��
5.1 Overhead Using a standard stack and an ULA stack	� BOUTONATTEINDRE _Toc347138071 � RENVOIPAGE _Toc347138071 �29��
1. Upper Layer Protocol Control Information	� BOUTONATTEINDRE _Toc347138072 � RENVOIPAGE _Toc347138072 �30��
2. OSI Management Framework	� BOUTONATTEINDRE _Toc347138073 � RENVOIPAGE _Toc347138073 �31��
3. Application Layer	� BOUTONATTEINDRE _Toc347138074 � RENVOIPAGE _Toc347138074 �32��
4. Presentation Layer	� BOUTONATTEINDRE _Toc347138075 � RENVOIPAGE _Toc347138075 �36��
4.1 ASN.1 BER Backgrounder	� BOUTONATTEINDRE _Toc347138076 � RENVOIPAGE _Toc347138076 �37��
4.2 ASN.1 PER Backgrounder	� BOUTONATTEINDRE _Toc347138077 � RENVOIPAGE _Toc347138077 �40��
5. Session Layer	� BOUTONATTEINDRE _Toc347138078 � RENVOIPAGE _Toc347138078 �44��
6. Transport layer	� BOUTONATTEINDRE _Toc347138079 � RENVOIPAGE _Toc347138079 �45��
�
�
�PRIVE ��Annex A	Details of Overhead Calculations�te "Annex C	Details of Overhead Calculations"�

�PRIVE ��	PDU Definitions and Supporting ASN.1 Types�te "	PDU Definitions and Supporting ASN.1 Types"�

For convenience, the ASN.1 definitions of important ACSE, Presentation and Session PDUs used for the this overhead calculation are collected together in this section and annotated.

�PRIVE ��	
ACSE Definitions�te "	ACSE Definitions"�

The elements new to the ACSE edition 2 with the ASN.1extensibility notation (ISO/IEC 8650-1:1995,ed.2/PDAM2) of the connection-oriented ACSE are indicated by redlining.

ACSE-apdu :: = CHOICE
{
aarq	AARQ-apdu,			-- ACSE associate request pdu
aare	AARE-apdu,			-- ACSE associate response pdu
rlrq	RLRQ-apdu,			-- ACSE release request pdu
rlre	RLRE-apdu,			-- ACSE release response pdu
abrt	ABRT-apdu,			-- ACSE abort pdu
. ..
}

�

AARQ-apdu ::= [APPLICATION 0] IMPLICIT SEQUENCE
{
protocol-version			[0]	IMPLICIT BIT STRING
						{version1(0)} DEFAULT {version1 },
application-context-name		[1]	Application-context-name,
called-AP-title			[2]	AP-title OPTIONAL,
called-AE-qualifier			[3]	AE-qualifier OPTIONAL,
called-AP-invocation-identifier	[4]	AP-invocation-identifier OPTIONAL,
called-AE-invocation-identifier	[5]	AE-invocation-identifier OPTIONAL,
calling-AP-title			[6]	AP-title OPTIONAL,
calling-AE-qualifier			[7]	AE-qualifier OPTIONAL,
calling-AP-invocation-identifier	[8]	AP-invocation-identifier OPTIONAL,
calling-AE-invocation-identifier	[9]	AE-invocation-identifier OPTIONAL,
-- The following field shall not be present if only the Kernel is used. 	
sender-acse-requirements		[10]	IMPLICIT ACSE-requirements OPTIONAL,
-- The following field shall only be present if the Authentication FU is selected. 	
mechanism-name			[11]	IMPLICIT Mechanism-name OPTIONAL,
-- The following field shall only be present if the Authentication FU is selected. 	
calling-authentication-value	[12]	EXPLICIT Authentication-value OPTIONAL,	
application-context-name-list	[13]	IMPLICIT Application-context-name-list OPTIONAL,
implementation-information		[29]	IMPLICIT Implementation-data OPTIONAL,
extensions					SEQUENCE {...} OPTIONAL,
user-information			[30]	IMPLICIT Association-information OPTIONAL
}
�
AARE-apdu ::= [APPLICATION 1] IMPLICIT SEQUENCE
{
protocol-version			[0]	IMPLICIT BIT STRING
						{version1(0),} DEFAULT { version1 },
application-context-name		[1]	Application-context-name,
result				[2]	Associate-result,
result-source-diagnostic		[3]	Associate-source-diagnostic,
responding-AP-title			[4]	AP-title OPTIONAL,
responding-AE-qualifier		[5]	AE-qualifier OPTIONAL,
responding-AP-invocation-identifier	[6]	AP-invocation-identifier OPTIONAL,
responding-AE-invocation-identifier	[7]	AE-invocation-identifier OPTIONAL,
-- The following field shall not be present if only the Kernel is used.	
responder-acse-requirements		[8]	IMPLICIT ACSE-requirements OPTIONAL,	
-- The following field shall only be present if the Authentication functional unit is selected.
mechanism-name			[9]	IMPLICIT Mechanism-name OPTIONAL,	
-- The following field shall only be present if the Authentication functional unit is selected.
responding-authentication-value	[10]	EXPLICIT Authentication-value OPTIONAL,
application-context-name-list	[11]	IMPLICIT Application-context-name-list 	OPTIONAL,
-- The above field shall only be present if the Application Context Negotiation functional unit is selected	
implementation-information		[29]	IMPLICIT Implementation-data OPTIONAL,
extensions					SEQUENCE {...} OPTIONAL,
user-information			[30]	IMPLICIT Association-information OPTIONAL,	
}

�

RLRQ-apdu ::= [APPLICATION 2] IMPLICIT SEQUENCE
{
reason				[0]	IMPLICIT Release-request-reason OPTIONAL,
extensions					SEQUENCE {...} OPTIONAL,
user-information			[30]	IMPLICIT Association-information OPTIONAL,
}

�

RLRE-apdu ::= [APPLICATION 3] IMPLICIT SEQUENCE
{
reason				[0]	IMPLICIT Release-request-reason OPTIONAL,
extensions					SEQUENCE {...} OPTIONAL,
user-information			[30]	IMPLICIT Association-information OPTIONAL,
}

�

-- For the purposes of this and associated papers, assume that an AE�Title is defined as:

AE-Title ::= OBJECT IDENTIFIER	-- 7 arcs of low values {(1) (3) (27) a b c d}
��PRIVE ��	Presentation Layer Definitions�te "	Presentation Layer Definitions"�

Presentation PCI

The PPDUs defined for the short-encoding and the null-encoding options of the presentation protocol are indicated by redlining.

CP-type ::= SET			-- Presentation Connect PDU
{
[0]	IMPLICIT Mode-selector,
[1]	IMPLICIT SET {COMPONENTS OF Reliable-Transfer-APDUs.RTORQapdu} OPTIONAL,
[2]	IMPLICIT SEQUENCE
	{
	[0]	IMPLICIT Protocol-version DEFAULT {version-1},
	[1]	IMPLICIT Calling-presentation-selector OPTIONAL,
	[2]	IMPLICIT Called-presentation-selector OPTIONAL,
	[4]	IMPLICIT Presentation-context-definition-list OPTIONAL,
	[6]	IMPLICIT Default-context-name OPTIONAL,
	[8]	IMPLICIT Presentation-requirements OPTIONAL,
	[9]	IMPLICIT User-session-requirements OPTIONAL,
		User-data OPTIONAL	
	} OPTIONAL
}

SHORT-CP PDU

The PCI of the SHORT-CP is one octet, with the two trailing bits consisting of the encoding-choice parameter. This PCI is followed by the User-data parameter (encoded as per the encoding-choice parameter, cf next section). The encoding of the SHORT-CP is as shown in the following bit pattern:

0000 00zz

where	zz identifies the encoding choice as follows:
	00: bilateral agreement
	01: BER
	10: unaligned PER
	11: aligned PER

�
CPA-PPDU ::= SET			-- Presentation Connect Accept PDU
{
[0] IMPLICIT Mode-selector,
[1] IMPLICIT SET {COMPONENTS OF Reliable-Transfer-APDUs.RTOACapdu} OPTIONAL,
[2] IMPLICIT SEQUENCE
	{
	[0]	IMPLICIT Protocol-version DEFAULT {version-1},
	[3]	IMPLICIT Responding-presentation-selector OPTIONAL,
	[5]	IMPLICIT Presentation-context-definition-result-list OPTIONAL,
	[8]	IMPLICIT Presentation-requirements OPTIONAL,
	[9]	IMPLICIT User-session-requirements OPTIONAL,
		User-data OPTIONAL
	} OPTIONAL
}

�

SHORT-CPA PDU

The PCI of the SHORT-CPA is one octet, with the two trailing bits consisting of the encoding-choice parameter. This PCI is followed by the User-data parameter (encoded as per the encoding-choice parameter, cf next section). The encoding of the SHORT-CP is as shown in the following bit pattern:

0000 00zz

where	zz identifies the encoding choice as follows:
	00: bilateral agreement
	01: BER
	10: unaligned PER
	11: aligned PER

�
�Presentation User Data

The encoding of the presentation User data required by the CNS/ATM-1 ULA is redlined.

User-data ::= CHOICE
{
	[APPLICATION 0] IMPLICIT Simply-encoded-data,
	[APPLICATION 1] IMPLICIT Fully-encoded-data
}

Simply-encoded-data ::= OCTET STRING

Fully-encoded-data ::= SEQUENCE
				SIZE (1,...)
				OF PDV-list

PDV-list ::= SEQUENCE
	{	Transfer-syntax-name OPTIONAL,	
		Presentation-context-identifier,	
		presentation-data-values	CHOICE {
			single-ASN.1-type 	[0] ANY,
			octet-aligned 	[1] IMPLICIT OCTET STRING,
			arbitrary 		[2] IMPLICIT BIT STRING
			}
	}

The Transfer-syntax-name field shall not be present in the encoded presentation User Data.
The ”arbitrary” choice for presentation-data-value shall be used in the encoded presentation User Data.
The values of the Presentation-context-identifier are predefined as follows: 0 (acse-apdu), 1 (reserved for future use), 2(user-ase-apdu), other (reserved for future use).

�
Presentation-context-definition-list ::= Context-list

Context-list ::= SEQUENCE OF SEQUENCE
{
	Presentation-context-identifier,			
	Abstract-syntax-name,		
	SEQUENCE OF Transfer-syntax-name		
}

Presentation-context-identifier ::= INTEGER
 (1..127,...)
�

Presentation-context-definition-result-list ::= Result-list

Result-list ::= SEQUENCE OF SEQUENCE
{
	[0] IMPLICIT Result,			-- INTEGER(0..2)
		-- Transfer-syntax-name shall be present if Result is "acceptance"
	[1] IMPLICIT Transfer-syntax-name OPTIONAL,
		-- provider-reason shall be present if Result is "provider-rejection"
	provider-reason	[2] IMPLICIT INTEGER
			{
			reason-not-specified (0),
			abstract-syntax-not-supported (1),
			proposed-transfer-syntaxes-not-supported (2),
			local-limit-on-DCS-exceeded (3)
			} OPTIONAL
}

Result ::= INTEGER {
		acceptance (0),
		user-rejection (1),
		provider-rejection (2)
	}

��PRIVE ��	Session Layer Definitions�te "	Session Layer Definitions"�

The PPDUs defined for the short-encoding and the null-encoding options of the session protocol are indicated by redlining.

�PRIVE ��CONNECT (CN) SPDU SI = 13��������PGI�m/nm�Code�PI�m/nm�Code�Octets��Connection identifier�nm�1�Calling SS-user reference�nm�10�64 max�����Common Reference�nm�11�64 max�����Additional reference information�nm�12�4 max��Connect / Accept�nm�5�Protocol options�m�19�1��item���TSDU maximum size�nm�21�4�����Version number�m�22�1�����Initial serial number�nm�23�6 max�����Token setting item�nm�26�1�����Session user requirements�nm�20�2�����Calling session selector�nm�51�16 max�����Called session selector�nm�52�16 max��User Data�nm�193����512 max�����Data overflow�nm�60�1��Extended user data�nm�194����10240 max��

SHORT �PRIVE ��CONNECT (SCN) SPDU ���������m/nm�Octet�Parameter�m/nm�Value�Bir number��SI&P�m�1�SI�m�101101�4-8�����Parameter indication�m�0�3��
�PRIVE ��DATA TRANSFER (DT) SPDU SI = 1��������PGI�m/nm�Code�PI�m/nm�Code�Octets�����Enclosure item�nm�25�1��User Information Field������unlimited��

�PRIVE ��TYPED DATA TRANSFER (TD) SPDU SI = 33��������PGI�m/nm�Code�PI�m/nm�Code�Octets�����Enclosure item�nm�25�1��User Information Field������unlimited���
�PRIVE ��ACCEPT (CNA) SPDU SI = 14��������PGI�m/nm�Code�PI�m/nm�Code�Octets��Connection identifier�nm�1�Called SS-user reference�nm�9�64 max�����Common Reference�nm�11�64 max�����Additional reference information�nm�12�4 max��Connect / Accept�nm�5�Protocol options�m�19�1��item���TSDU maximum size�nm�21�4�����Version number�m�22�1�����Initial serial number�nm�23�6 max�����Token setting item�nm�26�1�����Token item�nm�16�1�����Session user requirements�nm�20�2�����Calling session selector�nm�51�16 max�����Responding session selector�nm�52�16 max�����Enclosure item�nm�25�1��User Data�nm�193������
SHORT �PRIVE ��ACCEPT (SAC) SPDU ���������m/nm�Octet�Parameter�m/nm�Value�Bir number��SI&P�m�1�SI�m�111101�4-8�����Parameter indication�m�0�3��

�PRIVE ��FINISH (FN) SPDU SI = 9��������PGI�m/nm�Code�PI�m/nm�Code�Octets�����Transport disconnect�nm�17�1�����Enclosure item�nm�25�1��User Data�nm�193������

�PRIVE ��DISCONNECT (DN) SPDU SI = 10��������PGI�m/nm�Code�PI�m/nm�Code�Octets�����Enclosure item�nm�25�1��User Data�nm�193������
�PRIVE ��	ASN.1 EXTERNAL Type Definition�te "	ASN.1 EXTERNAL Type Definition"�

ASN.1 UNIVERSAL type EXTERNAL is taken to be as defined in ISO DIS 8824-1(1992):

 	EXTERNAL ::= [UNIVERSAL 8] IMPLICIT SEQUENCE
 	{
 		direct-reference	OBJECT IDENTIFIER OPTIONAL,
 		indirect-reference	INTEGER OPTIONAL,
 		data-value-descriptor	ObjectDescriptor OPTIONAL,
 		encoding CHOICE
 		{
 			single-ASN1-type	[0] ANY,
 			octet-aligned		[1] IMPLICIT OCTET STRING,
 			arbitrary		[2] IMPLICIT BIT STRING
 		}
 	}

 	ObjectDescriptor ::= [UNIVERSAL 7] GraphicString

�PRIVE ��	Definition of Object Identifiers�te "	Definition of Object Identifiers"�

�PRIVE ���Entity�Object Identifier�BER Encoding���ATN-App (application context)�{iso icd(3) icao(27) atn-ac(3) 0 (0)}�0x 2B 1B 03 00���ACSE�{joint-iso-ccitt association-control(2) abstract-syntax(1) apdus(0) version1(1)}�0x 52 01 00 01���ASN.1/BER�{joint-iso-ccitt asn1(1) basic-encoding(1)}�0x 51 01���ASN.1/PER�{joint-iso-ccitt asn1(1) packed-encoding(3) basic(0) unaligned(1)}�0x 51 03 00 01��
��PRIVE ��	Connection Oriented Upper Layer Overheads�te "	Connection Oriented Upper Layer Overheads"�

Overhead estimates for connection oriented upper layers (ACSE, Presentation and Session) are presented in this section. Two estimates are given, as follows:
ACSE ed.1/BER + full Presentation/BER + full Session (standard stack)
ACSE ed.2/PER + Presentation ”Fast Byte” + Session ”Fast Byte” (ULA stack)

�PRIVE ��	Connection Establishment (Request)�te "	Connection Establishment (Request)"�

The association initialization will be carried by the ACSE A-ASSOCIATE request [AARQ] which in turn is carried by the Presentation P-CONNECT request [CP] which in turn is carried by the Session S�CONNECT. It is assumed that there is no ATN-App user data during the association establishment phase.

ACSE Association Request [AARQ]

The only parameter assumed to be required in the AARQ APDU is the ASO�context�name. There is no user data (overhead generated by user data is discussed in section 3.1).

�PRIVE ��	------
	-- ASN.1/BER Encoding of ACSE Ed. 1 AARQ-apdu

	T = 0x60					-- Application 0 [AARQ apdu]
	L = 0x??
		T = 0xA1				-- application-context-name
		L = 0x06
			T = 0x06			-- Object Identifier
			L = 0x04
			V = 0x2B 0x1B 0x03 0x00	-- {Ctx 0}
�SEQ Text_Box * ARABE�1�
ASN.1/BER encoding of ACSE ed.1 AARQ

With no user data, the AARQ overhead is thus 10 octets for ACSE.

ASN.1/PER encoding of ACSE ed. 2 AARQ

�PRIVE ��	-----
	-- ASN.1/PER Encoding of ACSE Ed. 2 AARQ-apdu

	Extensibility	=	B`0’
	ACSE-apdu.Choice =	B`000'
	Preamble		=	B`00000000 00000001'		-- only user-info present
	ASO-context-name =	B`11'				-- no of arcs less 1
				0x2B 0x1B 0x03 0x00		-- {ctx 0}
�SEQ Text_Box * ARABE�2�

With no user data, the AARQ overhead is thus 6 octets and 6 bits.

That APDU has to be embedded in a Fully-encoded-data structure in order to allow the ATN-App CF to distinguish APDUs when there are several abstract syntaxes defined.

�PRIVE ��	-----
	-- ASN.1/PER Encoding of the CF PDV

	Number of PDVs	=	0x01				-- PDV-list
	Preamble		=	B`0’				-- transfer-syntax-name absent
	presentation-ctx-id	=	0x00				-- presentation-context-identification
	p-d-v		=	B`10’				-- choice = arbitrary

The encoding of the CF PDV generates an overhead of 2 octets + 3 bits. The actual AARQ overhead is thus 9 octets + 1 bit.
�SEQ Text_Box * ARABE�3�

Presentation Connect Request [CP]

The following parameter values are assumed:
a Mode-selector of normal,
Calling�presentation�selector (Optional) not used,
Called�presentation�selector (Optional) not used,
Presentation�context�definition�list:
Abstract syntax of ACSE ed.1
Application layer's abstract syntax ATN-App
Transfer syntax of either ASN.1/BER or ASN.1/PER
simply-encoded user-data (ie. an OCTET STRING).
�
ASN.1/BER Encoding of CP

�PRIVE ��	-----
	-- Full Presentation : CONNECT PDU (CN)

	T = 0x31					-- Presentation CP-type
	L = 0x??
		T = 0xA0				-- mode-selector
		L = 0x03
		V = 0x80 0x01 0x00			-- normal
		T = 0xA4				-- Presentation-context-definition-list
		L = 0x??
			T = 0x30			-- SEQUENCE OF SEQUENCE {}
			L = 0x??
				T = 0x02		-- Presentation-context-identifier
				L = 0x01
				V = 0x01		-- PCI = 1
				T = 0x06		-- Object Identifier
				L = 0x04
				V = 0x52 0x01 0x00 0x00	-- ACSE
				T = 0x30		-- SEQUENCE OF Transfer-syntax-name
				L = 0x04
					T = 0x06	-- Object Identifier
					L = 0x02
					V = 0x51 0x01	-- ASN.1/BER
				T = 0x02		-- Presentation-context-identifier
				L = 0x01
				V = 0x02		-- PCI = 2
				T = 0x06		-- Object Identifier
				L = 0x04
				V = 0x?? 0x?? 0x?? 0x??	-- ATN App
				T = 0x30		-- SEQUENCE OF Transfer-syntax-name
				L = 0x04
					T = 0x06	-- Object Identifier
					L = 0x02
					V = 0x51 0x03 0x00 0x01	-- ASN.1/PER
		-- user-information (See section 5.2)

With no user data, the CP overhead is thus 43 octets.

Encoding of the SHORT CP

	-- Short-encoding option (”Fast Byte”) : SHORT CONNECT PDU (SCP)

	PCI = B`000000’			-- Presentation Short CP
	zz = B`10’			-- transfer syntax = PER
		-- user-information (See section 5.2)
�SEQ Text_Box * ARABE�4�

With no user data, the SCP overhead is thus 1 octets.
� Session Connect Request

If Session User Requirements is absent, the default is as though half-duplex, minor synchronization, activity management, capability data and exceptions functional units had been selected. However, by specifying a value of 0x?? 0x?? duplex functional unit is selected.

�PRIVE ��	SI = 0x0D					-- CN-SPDU
	LI = 0x??
		PGI = 0x05				-- Connect/Accept Item
		LI = 0x06
			PI = 0x13			-- Protocol Options
			LI = 0x01
			PF = 0x00
			PI = 0x16			-- Version
			LI = 0x01
			PF = 0x02			-- Version 2
			PI = 0x14			-- User Requirements
			LI = 0x02
			PF = 0x0? 0x0?			-- See text
		PGI = 0xC1 | C2				-- User Data Preamble
		LI = 0x?? | 0xFF 0x?? 0x??
�SEQ Text_Box * ARABE�5�

The Basic Session-CN Header Size is thus 14 octets. If the Session User data is not greater than 512 octets, then the data header adds another 2 octets, otherwise 4 octets are added, giving a header size of:
16 octets (short user data)
18 octets (long user data)

Encoding of the SHORT CONNECT PDU (SCN)

	-- Short-encoding option (”Fast Byte”) : SHORT CONNECT PDU (SCN)

	SI = B`101101’			-- Session Short CN
	P = B`0’				-- no parameter
		-- user-information (See section 5.2)
�SEQ Text_Box * ARABE�6�
With no user data, the SCN overhead is thus 1 octets.

�PRIVE ��	Connection Establishment (Response)�te "	Connection Establishment (Response)"�

ACSE Association Response [AARE]

The only parameters assumed to be required are protocol version, application-context-name, result, result-source-diagnostic. The application receives no user-information.

ASN.1/BER Encoding of ACSE Ed. 1 AARE

�PRIVE ��	-----
	-- ASN.1/BER Encoding of ACSE Ed 1. AARE-apdu

	T = 0x61					-- AARE-apdu
	L = 0x??
		T = 0xA1				-- application-context-name
		L = 0x06
			T = 0x06			-- OBJECT IDENTIFIER
			L = 0x04
			V = 0x2B 0x1B 0x30 0x00	-- { Ctx 0}
		T = 0xA2				-- result
		L = 0x03
			T = 0x02			--
			L = 0x01
			V = 0x??
		T = 0xA3				-- result-source-diagnostic
		L = 0x05
			T = 0xA0 | 0xA1			--
			L = 0x03
				T = 0x02		-- Integer
				L = 0x01		-- Bounded 0..10
				V = 0x??

With no user data, the AARE overhead is thus 22 octets for ACSE

ASN.1/PER Encoding of ACSE Ed. 2 AARE
�PRIVE ��	-----
	-- ASN.1/PER Encoding for ACSE Ed. 2 AARE-apdu

	Extensibility bit			B`0’
	ACSE.apdu.Choice =		B`001'
	Preamble	 =			B`00000000 001'		-- user-info only
	Application-context-name = 		B`11'			-- no of arcs
					0x2B 0x1B 0x03 0x00	-- {Ctx 0}
	Associate-result =			0x??		-- INTEGER (assume 0..255)
	result-source-diagnostic =		B`?'			-- CHOICE of 2
					0x??		-- INTEGER (assume 0..255)
	

With no user data, the AARE overhead is thus 8 octets + 2 bits for ACSE. In addition to the CF PDV encoding, the AARE overhead is therefore 10 octets + 6 bits.

�Presentation Connection Response [CPA]

The following parameter values are assumed;
a Mode-selector of normal,
acceptance of the presentation context definition and,
simply encoded user-data.

ASN.1/BER Encoding of CPA
�PRIVE ��	-----
	-- Full Presentation: ACCEPT CONNECT PDU (CPA)

	T = 0x31					-- CPA-PPDU
	L = 0x??
		T = 0xA0				-- mode-selector
		L = 0x03
			T = 0x80
			L = 0x01
			V = 0x01			-- normal
		T = 0xA2				-- [2] SEQUENCE
		L = 0x??
			T = 0xA5			-- Presentation-context-definition-result-list
			L = 0x??
				T = 0x30			-- SEQUENCE OF SEQUENCE
				L = 0x??
					T = 0x80		-- [0] Result
					L = 0x01
					V = 0x??		-- acceptance
					T = 0x81		-- [1] Transfer-syntax-name
					L = 0x02
					V = 0x51 0x03 0x00 0x01	-- {ASN.1/PER}
					T = 0x80		-- [0] Result
					L = 0x01
					V = 0x??		-- acceptance
					T = 0x81		-- [1] Transfer-syntax-name
					L = 0x02
					V = 0x51 0x03 0x00 0x01	-- {ASN.1/PER}

	

With no user data, the CPA overhead is thus 31 octets for ACSE Ed. 1.

	-- Short-encoding option (”Fast Byte”): SHORT CONNECT ACCEPT PDU (SHORT-CPA)

	PCI 	= B`000000’				-- CPA-PPDU
	zz	= B`10’					-- transfer syntax = PER
	
Encoding of the SHORT CPA

With no user data, the SHORT-CPA overhead is thus 1 octet.

Session Connection Accept [CNA]

The session user requirements are used to indicate the functional units proposed by the Session Connection Request (see previous calculation for CN-SPDU).

�PRIVE ��	SI = 0x0E					-- CNA-SPDU
	LI = 0x??
		PGI = 0x05			-- Connect/Accept item
		LI = 0x06
			PI = 0x13			-- Protocol Options
			LI = 0x01
			PF = 0x00
			PI = 0x16			-- Version Number
			LI = 0x01
			PF = 0x02
		PI = 0x14				-- Session User Requirements
		LI = 0x02
		PF = 0x00 0x02				-- See Text
		PGI = 0xC1 | 0xC2			-- User Data
		LI = 0x?? | 0xFF 0x?? 0x??
		PF = xx xx ... xx xx			-- PPDU

The Basic Session-CNA Header Size is 14 octets. If the Session User data is not greater than 512 octets, then the data header adds another 2 octets; otherwise 4 octets are added, giving a header size of:
16 octets (short user data)
18 octets (long user data)

Encoding of the SHORT CONNECT ACCEPT PDU (SCA)

	-- Short-encoding option (”Fast Byte”) : SHORT CONNECT PDU (SCA)

	SI = B`101101’			-- Session Short Accept
	P = B`0’				-- no parameter
		
�SEQ Text_Box * ARABE�7�
With no user data, the SCA overhead is thus 1 octets.

�PRIVE ��	Connection Termination (Request)�te "	Connection Termination (Request)"�

ACSE Release Request [RLRQ]

This can potentially have no content.

ASN.1/BER Encoding of ACSE Ed.1 RLRQ

�PRIVE ��	T = 0x62
	L = 0x00
�SEQ Text_Box * ARABE�8�

The ACSE Ed. 1 RLRQ overhead is thus 2 octets.

ASN.1/PER Encoding of ACSE Ed.2 RLRQ

�PRIVE ��	ACSE-apdu.Choice =	B`010'
	Preamble =		B`000'
�SEQ Text_Box * ARABE�9�

The ACSE Ed. 2 RLRQ overhead is thus 6 bits. Including the CF-PDV encoding, the actual overhead is 3 octets + 1 bit.

Presentation Release Request

The P-RELEASE presentation service is carried by a User-Data PPDU. Since the defined context set (DCS) cannot change over the lifetime of the presentation connection (the context management functional unit is not selected), User�data can be conveyed as simply-encoded-data (ie. an Octet String). As the A�RELEASE encoding is small in size, use short-definite length encoding.

ASN.1/BER Encoding of Presentation Release Request
�PRIVE ��	T = 0x60						-- User-Data PPDU
	L = 0x??
	V = xx xx ... xx xx					-- ACSE RLRQ
�SEQ Text_Box * ARABE�10�

When selecting the null-option of the Presentation protocol, no overhead is generated by the presentation during the connection release phase.

Session Finish [FN]

To close the session down, use a FINISH SPDU and send this on T-DATA:

�PRIVE ��	SI = 0x09						-- FN-SPDU
	LI = 0x00
	CN = none
�SEQ Text_Box * ARABE�11�

When selecting the null-option of the Session protocol, no overhead is generated by the session during the connection release phase.

�PRIVE ��	Connection Termination (Response)�te "	Connection Termination (Response)"�

ACSE Release Request [RLRE]

This can potentially have no content.

ASN.1/BER Encoding of ACSE Ed.1 RLRE

�PRIVE ��	T = 0x63
	L = 0x00
�SEQ Text_Box * ARABE�12�
The ACSE Ed. 1 RLRQ overhead is thus 2 octets.

ASN.1/PER Encoding of ACSE Ed. 2 RLRE

�PRIVE ��	ACSE-apdu.Choice =	B`011'
	Preamble =		B`000'
�SEQ Text_Box * ARABE�13�

The ACSE Ed. 2 RLRQ overhead is thus 6 bits. Including the CF-PDV encoding, the actual overhead is 3 octets + 1 bit.

Presentation Release Response

The P-RELEASE presentation service is carried by a User-Data PPDU. Since the defined context set (DCS) cannot change over the lifetime of the presentation connection (no context management functional unit), convey User�data as simply-encoded-data (ie. an Octet String). As the A�RELEASE encoding is small in size, use short-definite length encoding.

ASN.1/BER Encoding of Presentation Release Response

�PRIVE ��	T = 0x60					-- User-Data PPDU
	L = 0x??
	V = xx xx ... xx xx
�SEQ Text_Box * ARABE�14�

When selecting the null-option of the Presentation protocol, no overhead is generated by the presentation during the connection release phase.

Session Disconnect [DN]

The response to a Session FINISH is a DISCONNECT:

�PRIVE ��	SI = 0x0A					-- DN-SPDU
	LI = 0x00
	CN = none
�SEQ Text_Box * ARABE�15�

When selecting the null-option of the Session protocol, no overhead is generated by the session during the connection release phase.

�PRIVE ��	Data Transfer Phase�te "	Data Transfer Phase"�

Application data is mapped onto P-DATA, so there is no ACSE involvement here.

The overhead generated by the CF PDV encoding is 2 octets + 3 bits.

Presentation

The structure of the data carried is a matter for bilateral agreement, it being delivered to the application as an anonymous octet string.

ASN.1/BER Encoding of Presentation Data

There are a number of ways of encoding the Presentation data using BER, including the following:

�PRIVE ��a)	For up to 127 octets of data, use the short variant of definite length encoding, giving an overhead of 2 octets:

	T = 0x60					-- simply-encoded-data
	L = 0x??					-- Length £ 127 octets
	V = xx xx ... xx xx

b)	For up to 65,535 octets of data, use the long variant of definite length encoding with a length of lengths of 2. This results in an overhead of 4 octets:

	T = 0x60					-- simply-encoded-data
	L = 0x82 0x?? 0x??
		V = xx xx ... xx xx

c)	For unlimited data lengths, use Indefinite length encoding. This results in an overhead of 4 octets:

	T = 0x60					-- simply-encoded-data
	L = 0x80
		V = xx xx ... xx xx
	¶ = 0x00 0x00
�SEQ Text_Box * ARABE�16�

Alternatives (b) and (c) have the same overhead, but alternative (c) is easier to implement. Indefinite length encoding of data is therefore the preferred method.

When selecting the null-option of the Presentation protocol, no overhead is generated by the presentation during the data transfer phase.

Session

The Session Data Transfer Phase has a number of options;

a)	normal data transfer, using the S-DATA service. In order to support basic concatenation, the Give Token SPDU is transferred with each (normal) Data SPDU

b)	typed data transfer, using the S�TYPED�DATA service. This service is normally used to convey protocol control information outside of the normal data stream. The Typed Data functional unit needs to be active (and specified in the S-CONNECT)

c)	expedited data transfer, using the S-EXPEDITED-DATA service. An Expedited SPDU can carry a maximum of 14 octets of user information.

Typed Data gives an overhead of 2 octets:

�PRIVE ��	SI = 0x21					-- TD-SPDU
	LI = 0x00
	-- user information
�SEQ Text_Box * ARABE�17�

Normal data transfer gives an overhead of 4 octets:

�PRIVE ��	-- GT-SPDU (S-GIVE-TOKEN required for basic concatenation)
	SI = 0x01
	LI = 0x00
	-- DT-SPDU (S-DATA)
	SI = 0x01
	LI = 0x00
	-- Followed by user-information (ie the P-DATA PPDU)
�SEQ Text_Box * ARABE�18�

Expedited data transfer gives an overhead of 2 octets:

�PRIVE ��	SI = 0x05					-- EX-SPDU
	LI = 0x00
�SEQ Text_Box * ARABE�19�

When selecting the null-option of the Session protocol, no overhead is generated by the session during the data transfer phase.

��PRIVE ��

�PRIVE ��	User-Data and User-Information�te "	User-Data and User-Information"�

�PRIVE ��	Association-information (ASN.1/BER Encoded)�te "	Association-information (ASN.1/BER Encoded)"�

There are a number of ways of encoding ACSE Association-information using Basic Encoding Rules, including:

a)	If the maximum length of Association-information is 123 octets, then the following short-definite length form of encoding can be used, giving an overhead of 6 octets.

�PRIVE ��	T = 0xBE 				-- Association Information
	L = 0x??					-- Length £ 127 octets
		T = 0x08			-- EXTERNAL
		L = 0x??				-- Length £ 125 octets
			T = 0x81 		-- OCTET STRING
			L = 0x??			-- Length £ 123 octets
				V = xx xx ... xx xx	-- user information
�SEQ Text_Box * ARABE�20�

b)	If a generalized case is required, with no restriction on the length of Association�information, then indefinite length encoding must be used. This method results in an overhead of 12 octets.

�PRIVE ��	T = 0xBE				-- Association Information
	L = 0x80
		T = 0x08			-- EXTERNAL
		L = 0x80
			T = 0x81		-- OCTET STRING
			L = 0x80
				V = xx xx ... xx xx	-- user information
			¶ = 0x00 0x00
		¶ = 0x00 0x00
	¶ = 0x00 0x00
�SEQ Text_Box * ARABE�21�

��PRIVE ��	Presentation User-data (ASN.1/BER Encoded)�te "	Presentation User-data (ASN.1/BER Encoded)"�

There are a number of ways of encoding Presentation User-data using BER. If we restrict the choice to simply-encoded-data the following methods can be used:

a)	For up to 127 octets of data, use the short variant of definite length encoding. This results in an overhead of 2 octets:

�PRIVE ��	T = 0xA0
	L = 0x??
	V = xx xx ... xx xx
�SEQ Text_Box * ARABE�22�

b)	For up to 65,535 octets of data, use the long variant of definite length encoding with a length of lengths of 2. This results in an overhead of 4 octets:

�PRIVE ��	T = 0xA0
	L = 0x82 0x?? 0x??
	V = xx xx ... xx xx
�SEQ Text_Box * ARABE�23�

c)	For unlimited data lengths, use indefinite length encoding, giving an overhead of 4 octets:
�PRIVE ��	T = 0xA0
	L = 0x80
	V = xx xx ... xx xx
	¶ = 0x00 0x00
�SEQ Text_Box * ARABE�24�

�PRIVE ��	Association-information (ASN.1/PER Encoded)�te "	Association-information (ASN.1/PER Encoded)"�

There are a number of ways of encoding ACSE Association-information using PER:

�PRIVE ��	Preamble =	B`0001'		-- encoding only choice in EXTERNAL
	Preamble =	B`010'		-- OCTET STRING
	Length =		B`0'		-- Length less than 128
	Length =		B`???????'	-- Length
	User-data =	xx xx ... xx xx
�SEQ Text_Box * ARABE�25�
a)	For up to 127 octets of data:

b)	For up to 16,384 octets of data:
�PRIVE ��	Preamble =	B`0001'		-- encoding only choice in EXTERNAL
	Preamble =	B`010'		-- OCTET STRING
	Length =		B`10'		-- up to 16K
	Length =		B`?????? ????????'	
	User-data =	xx xx ... xx xx
�SEQ Text_Box * ARABE�26�

�PRIVE ��	Presentation User-data (ASN.1/PER Encoded)�te "	Presentation User-data (ASN.1/PER Encoded)"�

If the choice is restricted to simply-encoded-data the following method can be used:

�PRIVE ��	Length =		B`10'		-- Length < 16K
	Length =		B`?????? ????????'
	User-data =	xx xx ... xx xx
�SEQ Text_Box * ARABE�27�

��PRIVE ��	Additional Options�te "	Additional Options"�

�PRIVE ��	Effect of Basic Addressing Information�te "	Effect of Basic Addressing Information"�

An AP-title is assumed to be an OID and an AE-qualifier is assumed to be a small value Integer (less than 128). The effect of including these addressing fields in Called and Calling Identification fields in ACSE connect pdus is as follows:

�PRIVE ��	-- ASN.1/BER Encoding of ACSE Called/Calling ID fields
	T = 0xA?						-- AP Title [2] or [6]
	L = 0x06
		T = 0x08					-- OBJECT IDENTIFIER
		L = 0x04
		V = 0x?? 0x?? 0x?? 0x??
	T = 0xA?						-- AE Qualifier [3] or [7]
	L = 0x03
		T = 0x02					-- INTEGER
		L = 0x01
		V = 0x??					-- Assume £ 127
	T = 0xA?						-- AP Invocation Id [4] or [8]
	L = 0x03
		T = 0x02					-- INTEGER
		L = 0x01
		V = 0x??					-- Assume £ 127
	T = 0xA?						-- AE Invocation Id [5] or [9]
	L = 0x03
		T = 0x02					-- INTEGER
		L = 0x01
		V = 0x??					-- Assume £ 127

	-- ASN.1/PER Encoding of ACSE Called/Calling ID fields
	Length = B`11'						-- Length of OID less 1
	Value = B`???????? ???????? ???????? ????????'		-- OBJECT IDENTIFIER
	Value = B`????????'					-- Assume £ 127
	Value = B`????????'					-- Assume £ 127
	Value = B`????????'					-- Assume £ 127
�SEQ Text_Box * ARABE�28�

��PRIVE ��	Effect of Additional Abstract Syntaxes�te "	Effect of Additional Abstract Syntaxes"�

If the application needs to specify a distinct abstract syntax, then the addition of this adds 15 octets (when selecting ASN.1/BER) or 17 octets (when selecting ASN.1/PER), as follows:

�PRIVE ��	-- Each additional abstract syntax (to be included in the
	-- SEQUENCE OF SEQUENCE within the presentation-context-
	-- definition-list) will encode as:
	T = 0x02				-- P-ctx-identifier
	L = 0x01
	V = 0x??
	T = 0x06				-- Abstract-Syntax
	L = 0x04
	V = 0x?? 0x?? 0x?? 0x??		-- Five arc OID
	T = 0x10				-- SEQUENCE OF Transfer-syntax-name
	L = 0x04
		T = 0x06
		L = 0x02
		V = 0x51 0x01		-- {ASN.1/BER}

	-- PER encoding

	0x??					-- INTEGER (assume 0..255)
	B`11'					-- no of OID arcs less 1
	0x?? 0x?? 0x?? 0x??			-- Abstract Syntax
	0x01					-- No of Transfer syntaxes
	B`11'					-- no of OID arcs less 1
	0x51 0x03 0x00 0x01			-- {ASN.1/PER}
�SEQ Text_Box * ARABE�29�

�PRIVE ��	Summary�te "	Summary"�

<Editor’s note: this section shall be reviewed>

The overhead due to upper layers depends upon the inclusion or exclusion of user-information and its ultimate encoding. The estimates are based on a number of assumptions which are detailed in section 3.2 in the body of the Standing Document.

The ASN.1/BER used in producing these estimates does not give a unique octet sequence during encoding. Different designs of encoder will produce different, but correct, encodings (cf. Distinguished Encoding Rules, which guarantee that an encoding can only be performed one way - thus encodings can be `string compared'). If minimum size is the ultimate goal, then PER should be examined. However, PER is not currently allowed in the base standards for ACSE and Presentation.

As an example, if an application generates an A-ASSOCIATE with no user-data, then transmits 1024 octets of data, and then terminates, the overheads incurred are as summarised in the following sections.

Options:

The addition of called and calling address information to ACSE adds 23 octets to the ASN.1/BER encoding or 7¼ to the ASN.1/PER encodings.

If Presentation is expected to carry between 126 and 65,535 octets of data this adds 4 octets to the P-DATA.
�
�PRIVE ��	Overhead Using a standard stack and an ULA stack�te "	Overhead Using Current ACSE"�

�PRIVE ���ACSE ed.1 + full Presentation + full Session�CF PDV + ACSE ed. 2 + short and null encoding option of Presentation and Session
(octets + bits)��Establish Connection - Request
 CF PDV
 ACSE AARQ
 Presentation
 Session�
0
10
43
16�
2 + 3
6 + 6
1
1��S�69�11 + 1��Establish Connection - Response
 CF PDV
 ACSE AARE
 Presentation
 Session �
0
22
31
16�
2 + 3
8 + 2
1
1
��S�69�10 + 7��Data Transfer Phase
 CF PDV
 Presentation P-DATA
 Session S-TYPED-DATA�
0
4
2�
2 + 3
0
0��S�6�2 + 3��Terminate Connection - Request
 CF PDV
 ACSE RLRQ
 Presentation P-RELEASE
 Session FN�
0
2
2
2�
2 + 3
0 + 6
0
0��S�6�3 + 1��Terminate Connection - Response
 CF PDV
 ACSE RLRE
 Presentation P-RELEASE
 Session DN�
0
2
2
2�
2 + 3
0 + 6
0
0��S�6�3 + 1��TOTALS�156�30 + 5���Annex B	Tutorial Material�
�PRIVE ��	Upper Layer Protocol Control Information�te "	Upper Layer Protocol Control Information"�

In order for the support services (ACSE, Presentation and Session) to actually do something, an application entity (or ASO) needs to form an association with another (remote) entity of the same type. The requirements placed on the support services can be very simple in order to minimize the protocol overhead. Further, if the application requires only to transfer a rather limited amount of data, say 512 bytes, it may be possible to do this on the back of the association establishment. With this mini-call concept no actual data phase is entered into, even though a block of data can be passed to, and another block received from, the remote application.

The diagram that follows gives an indication of how headers are conceptually added to the user data at each of the OSI layers.

��SEQ Figure * ARABE \h�

Protocol control information (PCI) is added to the user information (as carried by ACSE) as illustrated below:

�PRIVE ��Transport
Header�Session
Header�Presentation
Header�ACSE
Header�Application Data������SEQ OF EXTERNAL�����simply-encoded-data (OCTET STRING)�����OCTET STRING�����OCTET STRING�����
The following ACSE Connection Mapping takes place in the Connection-Oriented situation:

�PRIVE ��ACSE�Presentation�Session��A-ASSOCIATE�P-CONNECT�S-CONNECT��A-RELEASE�®�S-RELEASE��®�P-DATA�S-DATA��®�P-DATA�S-DATA��®�P-DATA�S-DATA��A-ABORT�P-ABORT�S-ABORT��
�PRIVE ��	OSI Management Framework�te "	OSI Management Framework"�

The OSI management framework defines how elements in each of the layers, including the application layer, are managed. The framework specifies how this is done in a generic way that is applicable to every layer, in particular to any application that can be defined in the application layer.

As the framework is generic in nature, the term `managed object' is used as the generic name of the things that are to be managed. A managed object could be a piece of equipment such as a router, a layer within the OSI model such as the presentation layer, an application service element such as RTSE, or any other object that could be managed.

The information flow between managed objects and the applications that manage them are defined in terms of:

operations - where the managed object is given an instruction such as resetting a timer.

notifications - where the managed object produces a report that is typically triggered by an event such as a message queue reaching a certain size.

The managed object is modeled, for management purposes, as a set of attributes each of which has a value. For example, a message transfer agent has message queues, timers, log files, routing tables, passwords, user accounts etc.

How the management application accepts operation request from the user, and how it acts on notifications is beyond the scope of the standard which just presents the model.

Management functionality is categorised into five functional areas:

a)	fault management - which include functions which manage:
	×	fault traces and fault identification
	×	diagnostic tests
	×	fault corrections

b)	accounting management - which includes functions to:
	×	inform users of costs
	×	set accounting limits for users
	×	combine costs where multiple resources are invoked

c)	configuration management - which includes functions to:
	×	enable routine control of the system
	×	associate names with managed objects
	×	initialise and close down managed objects
	×	get notifications about significant changes
	×	change the configuration

d)	performance management - which includes functions to:
	×	gather statistics
	×	examine logs
	×	determine system performance
	×	alter modes of operation so that performance can be managed
	×	collect information about resource demand

e)	security management - which includes functions to:
	×	control security services
	×	distribute security related information
	×	report security related events including security threats

When new applications are created it is important to define what managed object there are in the system. The syntax and semantics of the managed objects attributes must be defined. This will allow the definition of an application to manage the operation of the application.

�PRIVE ��	Application Layer�te "	Application Layer"�

The application layer is the seventh and topmost layer in the OSI seven layer reference model. It makes use of the presentation service in order to cooperate with peer applications in other end systems, and provides services to the user (which may be a human or another application).

The application layer has a number of significant structural differences compared with the other layers. Each of the layers up to presentation provides a fixed standardized service to the layer above. The application layer however has many different functions (depending on the application), and may provide services either to the application user (which is equivalent to `the layer above') or to other elements within the application layer itself.

Figure 3.1 illustrates at a high level the relationship between the various components of the application layer.

�
�SEQ Figure * ARABE�2�	Figure 3.1 : The Major Application Layer Components

Figure 3.2 shows the various components of in the application layer as defined in the Application Layer Structure (ALS) model in ISO 9545, and shows how they are related.

�
�SEQ Figure * ARABE�3�	Figure 3.2 : Components of the application layer as defined in ALS

Associations

ASOs cannot cooperate until invoked. When two (or possibly more) ASOIs cooperate, the relationship between them is known as an ASO Association.

At any given time, an ASOI may have zero, one or more than one ASO associations with other ASOIs.

An ASO association is between two (or possibly more) ASOIs. These peer ASOIs are not necessarily of the same type, but must be of complimentary types. For example, if they are to exchange data, both must understand the same data syntax.

An ASO association is characterised by an ASO Context, which defines:
×	the communications behaviour
×	a set of rules and state information
×	the number of ASOIs allowed in the ASO association
×	how the ASO association can be started and finished

The ASOIs agree the ASO context before the ASO association is established. The ASO context may be identified by either defining it with the information listed above, or (more practically) by sending the identification of an ASO context that is well known or has been agreed beforehand.

The agreement of the ASO context is usually performed by the ACSE which is therefore one of the ASEs within the ASO.

An application association is a special type of ASO association which exists between an AE in one application and a peer AE in another. In a similar way, an application context is a special type of ASO context that characterises the application association. An application association underlies every other ASO association during the lifetime of the AEI. This is illustrated in figure 3.3.

�
�SEQ Figure * ARABE�4�	Figure 3.3 : Application and ASO Associations

��PRIVE ��	Presentation Layer�te "	Presentation Layer"�

< Note: tutorial material on « Fast Byte » Presentation will be added here.>

The Presentation Layer provides negotiation of different machine-independent encoding rules for use when exchanging information, and ensures that data is presented to applications in a format which they can interpret. Both connection-oriented and connectionless variants of the service and protocol are defined. The following Presentation layer functional units are defined:

	×	Kernel
	×	Presentation Context management
	×	Presentation Context restoration

Most common applications require only the Kernel functional unit.

The objective of OSI is to allow distributed applications to exchange information. In many cases, the information to be exchanged will be structured into a number of data elements. The primary function of the presentation layer is to encode these data elements into a string of octets in such a way that they can be precisely rebuilt by the receiving presentation layer and passed to the receiving application. The presentation layer must therefore convert potentially very complex data elements to a linear string of octets for transmission, through the application of `encoding rules'. It is this simple octet string which is processed by all the layers below the presentation layer. These concepts are illustrated in figure 4.1.

�
�SEQ Figure * ARABE�5�	Figure 4.1 : The Role of the Presentation Layer

The data elements which have to be transferred between OSI application layers are formally defined using a specification language known as Abstract Syntax Notation No. 1 (ASN.1), which is defined ISO 8824 (CCITT X.208). A set of rules have also been defined which may be applied to the ASN.1 notation in order to derive an octet string for submission to the supporting session layer. These rules, which are currently used by all implementations of OSI, are known as the Basic Encoding Rules (BER), which are defined in ISO 8825 (CCITT X.209). A number of other (more sophisticated) encoding schemes are currently being developed which will offer alternatives to the BER, as outlined elsewhere.

In addition, because communicating presentation layers must agree on which data elements are to be transferred and the encoding rules used to achieve this, a presentation service and protocol have been defined in ISO 8822 (CCITT X.216) and ISO 8823 (CCITT X.226) respectively. Both of these established standards define a connection-oriented service, in which a presentation connection must be established before data transfer can take place. More recently, a connectionless presentation protocol has been defined in ISO 9576.

�PRIVE ��	ASN.1 BER Backgrounder�te "	ASN.1 BER Backgrounder"�

The Basic Encoding Rules (BER) were the first encoding rules to be defined for ASN.1. The rules were originally defined in CCITT Recommendation X.409 in 1984. They were specifically defined for use with the X.400(1984) protocol.

The rules were subsequently refined and taken out of the X.400 series of recommendations to become X.209(1988), thus joining the non�application specific recommendations in the X.200 series. ASN.1/BER is now the default encoding rules used by all OSI based applications since it is normal practice in the Presentation Layer for the default encoding rules to be ASN.1 Basic Encoding Rules with any other encoding rules being subject to negotiation.

The ASN.1 Basic Encoding Rules are part of an ASN.1 toolkit for encoding data structured as defined in ASN.1. These rules allow a machine independent representation of data structures to be transferred between open systems.

Since the ASN.1 can be thought of as a programming language the encoding of ASN.1 data structures into a data stream can be thought of as an assembly process. Likewise the decoding of the data stream into data structures can be thought of as a disassembly process.

Note however that the Basic Encoding Rules have a number of variations for performing the actual encoding. Because of this there is not a one for one correspondence between the data structure and its encoding. It was to achieve a one for one correspondence that the Distinguished and Canonical Encoding Rules were created.

Note also that the Basic Encoding Rules make little attempt to optimize the encoding. It was to achieve a more compact encoding that the Packed Encoding Rules were created.

Encoding Techniques - The ASN.1 BER generates encodings which are known as Type�Length-Value (TLV) encodings which are also sometimes referred to as Identifier�Length-Content (ILC) encodings. This is a system whereby by reading each octet in turn it will contain information to allow the entire octet stream to be understood.

Type	The type is used to introduce the encoding. The type can be primitive in which case the associated value octets contain an actual value. The type can be constructed in which case the associated value octets contain another TLV encoding. Note that there is no limit to the depth of nesting of TLVs. If the type in a received data stream is not recognised, the associated length can be used to skip over that TLV and attempt to interpret the next TLV. There is therefore the possibility for an application with a restricted level of functionality to skip elements of syntax which it does not understand. Recent additions to the ASN.1 standards on extensibility allow extensions to ASN.1 types to be marked explicitly so that they may be safely ignored by older implementations.

Length	The length is used to indicate the end of the associated value octets. The length can be explicit in which case it is called a definite length encoding. The length can be implicit in which case it is called an indefinite length encoding.

Value	The value contains an actual value if the associated type is primitive. The value contains another TLV encoding if the associated type is constructed.

Type Encoding

The Type is the first part of any encoding and is made up of one or more octets. The Type is encoded as follows, where the first octet indicates whether the single octet variant or a multi-octet variant is being used:

	single octet variant:		B 'CCFNNNNN'
	multiple octet variant:	B 'CCF11111 1xxxxxxx ... 0xxxxxxx'

CC is the Tag class, which indicates the scope of the type as Universal (B`00'), Application-wide (B`01'), Context�specific (B`10') or Private-use (B`11').

F is the Tag Form , which indicates that the type is Primitive (B`0') or Constructed (B`1').

NNNNN is the Tag Number for values between 0 and 30, xxx .. xxx is the Tag Number for values from 31 upwards.
					
Length Encoding

Three methods are available for encoding the length part of the TLV, again it is the first (or only) octet of the encoding that is used to indicate which method is being used;

×	Short Definite Method This method uses one octet, where the most significant bit is always zero. The length uses the remaining seven bits thus allowing a length from 1 up to 127 to be specified.

×	Long Definite Method This method uses more than one octet, where the most significant bit of the first octet is always set to one. The following seven bits are used to specify the length of lengths, n. The length itself is carried in octets 2 to 2+n.

	It is quite correct and a method favoured by implementors to use the long definite method with a 'fixed' length of lengths. For example a length of lengths fixed at 4 will accommodate lengths in the range 0 to 2+32 octets.

×	Indefinite Method The indefinite method can only be applied to constructed encodings. The length octet is set to 0x80 and the sequence 0x00 0x00 is appended to the constructed encoding as the end�of�contents marker.

A length with a value of 0xFF is reserved and should not be used.

Value Encoding

Each type has its own method of encoding. A selection of types is shown below.

×	Boolean A Boolean has a universal tag number of 1. It is encoded into a single octet, 0x00 for FALSE and any other value for TRUE.

×	Integer An Integer has a universal tag number of 2. It is encoded as a twos-complement binary number. If the contents octets of an integer value encoding consists of more than one octet, then the bits of the first octet and bit 8 of the second octet shall not be all 1's or all 0's. This rule allows integers to be encoded with the smallest number of octets. Therefore an integer in the range �128 to +127 can be represented by one octet and an integer in the range �32768 to +32767 (but excluding �128 to +127) can be represented by two octets.

×	Bit String A Bit String has a universal tag number of 3. In primitive form it is encoded as a bit stream. The first octet contains a count of the number of unused bits in the last octet. The unused bits are always set to zero for backwards compatibility with future versions of the ASN.1 definition.

×	Octet String An Octet String has a universal tag number of 4. In primitive form it is encoded as an octet stream.

×	Null A NULL has a universal tag number of 5. It has no content octets. It can be encoded as 0x05 0x00

×	Object Identifier An Object Identifier has a universal tag number of 6. It is encoded as the sequence of numbers representing the members. A slight optimization makes use of the fact that the first member, m, is always a very small number - the first two values m and n are compressed into one octet using the algorithm 40m + n.

×	IA5String An IA5String has a universal tag number of 22.
					
	Note that the segments of character strings, including IA5String, are Octet Strings. A (segmented) IA5String can therefore be thought of has having been defined as:

	IA5String ::= [UNIVERSAL 22] IMPLICIT SEQUENCE OF OCTET STRING

×	UTCTime A UTCTime string has a universal tag number of 23. A universal time type has a number of possible formats:
					
		minute precision	YYMMDDHHMM
		second precision	YYMMDDHHMMSS

	A time zone has to be appended either by using a Z to indicate local time or a time differential from UTC (+HHMM or -HHMM).

×	Enumerated An Enumerated type has a universal tag number of 10. The encoding will be the value of the member of the enumeration.

×	Sequence A Sequence or Sequence Of type has a universal tag number of 16. It is a constructed encoding that contains component values in definition order. (cf. Set)

×	Set A Set or Set Of type has a universal tag number of 17. It is a constructed encoding that contains component values in any order. (cf. Sequence)

×	Choice The encoding of a choice value is exactly that of the chosen alternatives.

×	Any The encoding of an any value is exactly that of the selected type. For example the value INTEGER 5 of type ANY is encoded as 02 01 05.

×	Tagged Types Where the tagging is IMPLICIT the encoding is the same as the base encoding, except it will have the tag value of that type being used.

Value Encoding Summary

The form of the encoding can be Primitive or Constructed.

�PRIVE ��Type�Tag Number�Form�Encoding��BOOLEAN�1�P�single octet FALSE=0x00, TRUE=any other value��INTEGER�2�P�twos-complement binary number��BIT STRING�3�P�the first octet contains a count of the unused bits in the last octet. This is followed by the bits of the value - the unused bits are always set to 0����C�use segmented value��OCTET STRING�4�P�the octets����C�use segmented value��NULL�5�P�no contents octet, length=0x00��OBJECT IDENTIFIER�6�P�packed sequence of the number used to represent the member values��ObjectDescriptor�7�P�The use of ObjectDescriptor is not recommended��EXTERNAL�8�P/C�as defined��REAL�9�P�Several possible methods��ENUMERATED�10�P�See INTEGER��SEQUENCE
SEQUENCE OF�16�C�The component values in the order in which they are defined��SET
SET OF�17�C�The component values in any order��NumericString�18�P�the string����C�use segmented value��PrintableString�19�P�the string����C�use segmented value��T61String�20�P�the string����C�use segmented value��VideotexString�21�P�the string����C�use segmented value��IA5String�22�P�the string����C�use segmented value��UTCTime�23�P�format according to universal time then use string��GeneralizedTime�24�P�format according to a series of ISO standards then use string��GraphicString�25�P�the string����C�use segmented value��VisibleString�26�P�the string����C�use segmented value��General String�27�P�the string����C�use segmented value��
�PRIVE ��	ASN.1 PER Backgrounder�te "	ASN.1 PER Backgrounder"�

The Packed Encoding Rules (PER) are defined in ISO/IEC 8825-2. PER makes use of features which appear in later versions of the ASN.1 syntax (constraint specification, EMBEDDED PDV, etc) to minimise the number of bits encoded for interchange. In each interchange, the receiver must have a priori knowledge of the types of data being sent for it to be possible to decode the data stream.

There are a number of variants of PER, namely BASIC-PER and RELAY-SAFE-CANONICAL-PER which come in both an ALIGNED and UNALIGNED variants. In the ALIGNED variant, padding bits are inserted from time to time to restore octet alignment before character strings and large integer values. In the UNALIGNED variant, which was added at a late stage in PER approval, no such padding bits are inserted.

For the purpose of this document the term ASN.1/PER is used to indicate the packed encoding of a single ASN.1 type (basic unaligned), which has been registered as:

	{joint-iso-ccitt asn1 (1) packed-encoding (3) basic (0) unaligned (1)}

The specification of PER requires that some fields are bit aligned (bit�fields) and other fields are octet aligned (octet�aligned�bit�fields). Note that the ALIGNED variants of PER uses a B`0' as alignment (padding) bits. There follows a simplified review of the techniques involved in using Packed Encoding Rules.

The following terms are used in ASN.1/PER:

Preamble - is a bit�field with a bit corresponding to each OPTIONAL or DEFAULT item - if the entry is present the bit is set to `1' otherwise it is set to '0'.

Canonical order - indicates that the elements are sorted as follows: Universal class tags first, followed by Application-wide, Context-specific and Private-use tags then within each class elements are sorted in ascending order of their tag number. A selection of types is shown below.

Octet-aligned-bit-field - a product of encoding that is a sequence of bits that begin on an octet boundary but need not finish on one.

Bit-field - a product of encoding that is a number of bits that may or may not begin on an octet boundary.

Field-list - a set of bit-fields and octet-aligned-bit-fields. Each value is encoded to form either a octet-aligned-bit-field or a bit-field then the field is appended to the current field-list (being preceded by a length indicator is some cases).

Constrained - a number that has a known (or determinable) lower and upper bound. The use of bounded values assumes that the decoder has the same type definitions and can deduce the same values for the bounds as the encoder. This will most likely be specified through a profile if not explicit in the original defining standard.

Unconstrained - a number that has a unknown (or undeterminable) lower and upper bound.

Semi-constrained - a number that has a known (or determinable) lower bound but an unknown (or undeterminable) upper bound. The use of the lower bound value assumes that the decoder has the same type definitions and can deduce the same value for the lower bound as the encoder. This will most likely be specified through a profile if not explicit in the original defining standard.

The encoding of a component of a data value consists of one of the following, where encoding b) applies where the contents are large:

a)	three parts (any or all of which may be empty, bit-fields, or octet-aligned-bit-fields) which appear in the following order:
	i)	a preamble
	ii)	a length determinant
	iii)	contents

b)	an arbitrary number of parts as follows:
	i)	a preamble
	ii)	a length determinant for the first fragment of the contents (octet-aligned-bit-field)
	iii)	the first fragment of the contents (octet-aligned-bit-field)
	iv)...	repeat ii) and iii) for all other fragments of the contents.

Type Encoding

ASN.1 PER does not use tags per se. It forms a canonical ordering of the alternatives and then uses a preamble as an indicator. The preamble uses a bit string to represent the presence (B`1') or omission (B`0') of DEFAULT or OPTIONAL items. A recipient of a PER-encoded data stream must know a priori the abstract syntax of the data being encoded.

Length Determinant Encoding � The length determinant is used, when required, to indicate the number of components in a SEQUENCE OF or the number of bits or octets in a data value. When a length determinant is present it can be encoded in a number of ways, but it will always be either constrained or semi-constrained with lower bound >= 0.

×	Constrained The length determinant is treated as an Integer whose value corresponds to the offset from the lower bound, and may therefore be a bit�field or an octet�aligned�bit�field.

×	Semi-constrained The length determinant is treated as an Integer whose value corresponds to the offset from the lower bound. The length is always octet�aligned. If the length is less than 128 it is encoded as B`0xxxxxxx', if the length is less than 16384 (2+14) it is encoded as B`10xxxxxx xxxxxxxx' otherwise it is encoded using a length of lengths introducer octet followed by the length octets B`11yyyyyy xxxxxxxx ... xxxxxxxx'.

Value Encoding � Each type has its own methods of encoding.

×	Boolean A Boolean type will occupy just one bit and immediately follows the current field�list. B`0' indicates FALSE and B`1' indicates TRUE.

×	Integer An integer type has a number of options:

	Constrained - A constrained integer type is specified as INTEGER (n..m). The lower bound (n) is subtracted from the value of the integer before encoding. A value in the range 0..255 uses a bit�field, a value equal to 256 uses 1 octet, a value in the range 257..65536 uses a 2 octet octet�aligned�bit�field and a value greater than 65536 uses indefinite length encoding and an octet�aligned�bit�field.

	Semi-Constrained - A semi-constrained integer type is one whose values are constrained to exceed or equal some value "lb" , with no upper bound being specified. The lower bound (lb) is subtracted from the value of the integer before encoding, and indefinite length encoding is used.

	Unconstrained - Indefinite length encoding is used, and the value is encoded as a 2's-complement binary integer in an octet-aligned bit field with the minimum number of octets.

×	Bit String If the bit string is constrained and contains up to (and including) 16 bits it is a bit�field. Larger bit strings are octet�aligned�bit�fields. If it is constrained there is no length, otherwise include a length.

×	OctetString If the length is zero it is not encoded. If the length is fixed at 1 or 2 then it is not an octet-aligned�bit�field and has no length field. If it is a fixed length octet string then encode with no length octets. Otherwise for unconstrained octet strings the (unconstrained) length is present.

×	Null No encoding

×	Object Identifier It uses the BER encoding (octet�aligned�bit�field) preceded by a semi�constrained length (with a lower bound of 1).

×	IA5String If the length is zero it is not encoded. If the length is fixed at 1 or 2 then it is a bit�field with no length. If it is a fixed length octet string then the (constrained or semi�constrained) length is present. Otherwise for unconstrained octet strings the (unconstrained) length is present.

×	Enumerated Sort into ascending order, then index from 0. Then treat the index as an Integer.

×	Sequence A preamble is used as an introducer when OPTIONAL or DEFAULT components are defined in the SEQUENCE. The presence or absence of each such component is indicated in the preamble bit-map by a `1' or `0' respectively. It is followed by the encodings for the individual elements.

×	Sequence Of If the number of components is fixed there is no length field, otherwise a length field is present. It is followed by the encoding of each component in turn.

×	Set The Set type has its elements sorted into a canonical order and is then encoded as if it had been declared a Sequence.

×	Choice The Choices are assigned an index (the choice index) starting at 0 for the first and `n' for the last. The choice index is then encoded as an Integer with a range of 0..n.

×	PDV-type A preamble is used as an introducer, with bits 8 and 7 set to B`1' the lower six bits are then used to select the Presentation Context Identifier. This is followed by a length and then the actual PDV.

×	Real The Real type is encoded as BER.
��PRIVE ��	Session Layer�te "	Session Layer"�

< Note: tutorial material on « Fast Byte » Session will be added here.>

The session layer provides functionality to checkpoint an information exchange to allow recovery to a previously confirmed checkpoint. It also provides a mechanism for segregating a number of independent information exchanges into different `activities' on the same connection, and managing dialogues between end-systems. Both connection-oriented and connectionless variants of the service and protocol are defined. The following Session layer functional units are defined:

	×	Kernel
	×	Negotiated Release
	×	Half Duplex
	×	Duplex
	×	Expedited data
	×	Typed data
	×	Capability data
	×	Minor synchronize
	×	Symmetric synchronize
	×	Major synchronize
	×	Resynchronize
	×	Exceptions
	×	Activity management

Session layer protocol data units are not defined using ASN.1. A special encoding mechanism is defined for session pdus.
��PRIVE ��	Transport layer�te "	Transport layer"�

The transport layer has overall responsibility for achieving the transparent transfer of information between two end-systems in an OSI network. It is the lowest layer of the OSI Reference Model which only resides in the end-systems of an OSI network, and does not exist in intermediate network nodes between these end-systems.

The role of the transport layer is to hide the complexity of the underlying network(s) by providing an end to end path for the data to flow through. The user of a transport service (e.g the session layer) does not have to be concerned about the underlying transmission media nor the combination of repeaters, bridges and routers that make up the communication network between the communicating end-systems, since the transport layer makes the network appear as a simple data pipe.

The use of a transport service also means that the upper layers need not be concerned about where the remote end-system is located nor what its network characteristics are. For example, it could be another machine on the same LAN or it could be another machine on the other side of the world, perhaps connected to a completely different network with a number of intermediate networks between the sender's and receiver's systems.

The transport layer provides a simple and consistent interface to the upper layers, and hence to the communicating applications. The actual functions performed by the transport layer will vary according to the nature of the underlying network and the requirements of the transport layer user. For example, only a simple transport layer will be required when using a highly reliable network such as X.25 packet switching, since the few errors which do occur in the network are generally detected and corrected by the X.25 protocols. On the other hand, if an error-prone network is used, there may be a requirement for the transport layer to detect and correct errors in order to provide a consistent service to the transport layer user. Similarly, if a connectionless network is used packets may arrive out-of-sequence, and so the transport layer will have to be capable of reordering the received information for presentation to the upper layers.

There are 6 `classes' of transport layer which reflect these different levels of complexity.

×	Class 0: Class 0 is the simplest variant of the transport layer, and is intended for use with a reliable underlying network such as X.25. The class 0 protocol is widely used with all OSI applications which communicate by means of an X.25 WAN.

×	Class 1: The class 1 transport layer is intended for use with networks which can detect but not recover from errors. In this case, the network layer reports the detected errors to the transport layer, and the transport layer is then responsible for recovering from that error. There has been little use made of the class 1 transport layer to date.

×	Class 2: The class 2 transport layer is based on class 0, but with the additional support of the `multiplexing' service. This service allows more than one user to make use of the same network connection at the same time, or allows consecutive users to make use of a network connection without have to close and then re-establish the network connection. For example, an X.400 system could be sending a message to a remote recipient and, at the same time, a file transfer application could be sending a file to the same end-system using the same network connection.

×	Class 3: The class 3 transport layer combines the functions of classes 1 and 2, as described above.

×	Class 4: The class 4 transport layer supports all the functions of classes 1 and 2, and additionally detects and recovers from errors which are not detected by the network layer (known as `residual' errors). This function includes the reordering of packets which are received out-of-sequence from the network layer, which is possible in the case of a connectionless network. As such, the class 4 transport layer is commonly used on LANs, which generally support a connectionless network service.

×	Class 5: More recently, the class 5 transport layer has been proposed. Transport layer classes 0 to 4 can be considered to be `peer-to-peer', in that information is exchanged between a single source transport entity and a single destination transport entity. In contrast, the class 5 transport layer supports a `multipeer' protocol, in which a single source entity may communicate with multiple destination entities, thereby providing a type of broadcast service. This class is not an international standard yet.

The transport layer is defined in the following primary standards:

ISO 8072 (CCITT X.214) defines the transport service (provided to the upper layers)

ISO 8073 (CCITT X.224) defines the transport protocol to support the connection mode transport service (COTS).

ISO 8602 defines the transport protocol to support the connectionless transport service (CLTS).

The basic role of the transport layer is illustrated in figure 6.1.

�

�SEQ Figure * ARABE�6�	Figure 6.1 : The End-to-End Role of the Transport Layer

�

Draft ULA Guidance Material for the ATN CNS/ATM-1 Package

ANNEXES

�PRIVE ��Version: 1.0�Date: 5th of February 1996�Page: �PAGE * ARABE�
46
���

�PRIVE ��Version: 1.0�Date: 5th of February 1996�Page: �PAGE * ARABE�43���

