ATNP SB3W0510

(Update to SB3W0411

Derived from ATNP WG1/SG2 WP1611 (revised))

Aeronautical Telecommunications Network Panel

Working Group B, Sub-Group SGB3

15-17 January, 2002

Atlantic City, NJ, USA
Adding Encryption Support to ATN

Prepared By: Certicom

 1 Introduction

The ATN network system provides communications services to applications that run between aircraft and ground stations, and also between pairs of ground stations. Previous work has added support for strong cryptographic guarantees of message integrity in application data. In this paper, we propose a way to add support for strong encryption to this system.

The use of encryption, like the use of application message integrity, is ultimately controlled by the CMA. An aircraft typically requests encryption along with message authentication in its initial login request (which also specifies a list of applications to be run), and the CMA returns information specifying which applications will support encryption, and which encryption method is to be used with each application. Messages exchanged between applications on the ground and in the air can then be encrypted.

In this document, we propose a way to add support for encryption to the ATN system. This includes proposals for some changes in CMA message formats, and possibly for two new CMA messages to be added. In our proposal:

a. Encryption is never done without message authentication.

b. A single encryption mechanism is proposed for current implementation, with guidelines for developing alternative encryption mechanisms if necessary.

c. Encryption key derivation substantially reuses the components already in place for message authentication.

d. Messages are never expanded by encryption.

e. Messages over both reliable and unreliable networks are supported.

f. Encryption of both ground-to-ground and ground-to-air messages is supported.

g. The order of operations (encryption, authentication, and compression) is specified.

1.1 Summary of Our Proposal

a. We propose changes to the CM-logon-request, CM-logon-response, and related message formats, to allow the aircraft to request encryption services, and to allow the CMA to respond with details of which requested applications will support encrytion, and which will not.

b. We specify how an aircraft and a ground application entity can agree upon a symmetric encryption key, building heavily upon the existing mechanisms for symmetric message integrity keys.

c. We specify how the encryption is to be done (using the AES encryption algorithm in full-block CFB-mode), and how the initialization vector is to be derived from available information.

d. We specify the order of operations. (Encryption happens before MACing or signing; decryption happens after MAC or signature verification, compression happens before encryption if it is used.)

e. We provide analysis and references to existing literature to justify our proposals, and also consider how new encryption mechanisms may be supported.

2 Requirements

The ATN system has strict limits on available bandwidth. Any attempt to add encryption support to ATN must meet the following requirements:

2.1 Key Derivation and Negotiation

a. Keys for different applications or the same application at different times must be statistically independent.

b. Keys must never repeat.

c. The system must support an aircraft interacting with both encrypting and non-encrypting applications at the same time.

d. The key negotiation must not require very much additional overhead in terms of either computation or bandwidth.

e. Wherever possible, standard mechanisms for key derivation should be used.

f. The CMA must not be able to carry out passive eavesdropping attacks on other applications.

g. Any active attacks carried out by the CMA must be possible to detect offline.

2.2 Encryption

a. The encryption mechanism used must require little or no additional bandwidth.

b. The encryption mechanism must remain secure when used with both reliable and unreliable delivery.

c. The encryption mechanism used should be a standard algorithm, used in a standard way.

3 Fitting Encryption into the System
3.1 Overview

In this section, we describe how encryption may be integrated into the ATN system cleanly. This requires a preview of some specific mechanisms to be introduced in the next section of the report.

a. As with the mechanism used for message integrity, the encryption mechanism used is defined as part of the standard, and can be changed only with new versions of the ATN SARPs. Barring new cryptanalytic results, the encryption mechanism used (AES with 128-bit keys in full-block cipher feedback mode) should provide acceptable security for the lifetime of the ATN system.

b. The encryption key derivation is carried out making extensive use of the existing infrastructure for message authentication. Barring new cryptanalytic results, this mechanism should likewise provide acceptable security for the lifetime of the ATN system.

c. Encryption is never done on messages that are not somehow authenticated, either by MAC or by digital signature. This is a requirement to prevent reaction- and chosen-ciphertext type attacks.

d. Once an encrypting session is established for a given application, all messages in that application are encrypted.

e. Applications keep a 16-bit counter to defeat replay attacks on messages. This 16-bit counter is also used in the encryption mechanism to provide IVs.

f. Plaintext messages are always encrypted first, and then authenticated. When these ciphertext messages are received, they are always verified first, and then decrypted.

3.2 Requesting Encryption through CM

In the current system, the variable SecurityRequired is used to request authentication in session-establishing CM messages like CM-logon-request. This security request is then passed on to the applications managed by the CMA, and the ground CMA entity carries out some checking of certificates on the aircraft CMA entity's behalf. To add encryption, this SecurityRequired variable will have to be able to take on at least two additional values. The first value might be something like "EncryptionRequired", and will request that a new set of keys be distributed and negotiated to support both encryption and message authentication. The second value might be something like "EncryptionInUse", and will specify that an ongoing CM dialogue continues to have encryption in use.

In the current system, the session-establishing message generally contains a list of requested applications, and the response contains a public key for each requested application that supports authentication. When encryption is added to the system, an indication will be added for each requested application in the response message (e.g., CM-logon-response), specifying whether or not encryption is supported.

The only application for which encryption support is not optional is the CMA itself; it MUST support encryption.

3.2.1 CM Messages Affected

The following CM messages will be affected by the change:

a. CM-logon-request

b. CM-logon-response

c. CM-contact-request

d. CM-contact-response

e. CM-forward-request

f. CM-forward-response

g. CM-server-facility-query-request

h. CM-server-facility-query-response

i. CM-server-facility-update

3.3 Encrypting CM Messages

When a session is established with the ground CMA entity, in which encryption is requested, all messages after the response message are encrypted. We do not believe that encrypting the first two messages with the ground CMA entity (e.g., CM-logon-request and CM-logon-response) has any important security benefit.

Our reasoning for this is as follows: The only information transferred in these first two messages is the list of applications requested, and some related addressing information. Encrypting these two messages, however, will not reliably hide which applications an aircraft is using. An attacker eavesdropping on the aircraft’s communications will see the source and destination addresses on all packets coming in and going out. In most situations, this will be enough for an attacker to determine which applications are being used. Additionally, an attacker eavesdropping on the aircraft’s communications will see the pattern of traffic to and from each destination address. A knowledge of how each important application works will allow the attacker to use this information to learn what applications are being used.

Because of this, we do not propose a mechanism to support encrypting the requested application lists.

3.4 Other Issues

There are several peripheral security issues that become important when we add encryption.

3.4.1 Guarding Against Man-in-the-Middle Attacks

The ground CMA entities in this system are in an ideal position to carry out man-in-the-middle attacks against aircraft/ground application entities. The simplest way to guard against this is for the aircraft CMA entity to log all the public keys sent to it from the CMA. These can be checked offline against the real certificates. Any detected deviation should cause an immediate investigation, since a compromised ground CMA entity can do enormous damage.

3.4.2 Order of Operations

As will be discussed in considerable detail below, the specific order of operations (compression, encryption, authentication) is very important. The following order of operations must be followed when generating a message:

a. Compress the input, if compression is being used. Otherwise, do nothing to the input.

b. Encrypt the result of the previous step.

c. Sign or MAC the result of the previous step. (That is, the ciphertext is MACed or signed.)

When receiving a message, the following order should be followed:

a. Verify the MAC or signature on the ciphertext.

b. Decrypt the ciphertext.

c. Decompress the plaintext, if it was compressed.

At present, we have not specified a way to negotiate compression. This order of operations is specified in case a future version allows compression to be negotiated, or in case some application is specified with compression. Note that if this system is used without reliable delivery, this will impose some special conditions on the compression algorithms used. This is discussed at greater length below.

4 Cryptography

4.1 Overview

In this section, we describe the cryptographic mechanisms used to derive keys, encrypt data, and keep data encryption synchronized across all messages. This comes down to four important considerations:

a. Encryption key derivation

b. Encryption mechanism proposed (and alternate mechanisms)

c. IV derivation

d. Order of operations (e.g., compress, then encrypt, then sign)

Additionally, we consider how this mechanism may be used on ground-to-ground messages, and some potential pitfalls with extensions of our encryption proposal that may be done in the future.

4.2 Key Agreement and Derivation for Air-Ground Application Messages

The current ATN system supports establishing secret, fresh shared keys for use with message authentication. Here, we describe a simple method for extending this existing scheme to establish secret, fresh shared keys for use with encryption.

The existing scheme provides five values and one function that we can use:

a. KDF(key;len;extraData) derives a key of any desired length using the key and extraData provided. Changing even one bit of extraData will randomize this key.

b. XU,V is the replay-protection value for this CMA session. This value is derived during the CM-logon-request and CM-logon-response messages, or during the related messages that establish a CM session between a ground CMA entity and an aircraft.

c. ZU,Y is the static Diffie-Hellman secret between aircraft U and ground application entity Y. This value, too, is derived during the CM-logon-request and CM-logon-response messages, or other closely related CM session establishing messages.

d. W is the application entity on the aircraft, and Y is the ground application entity.

e. len is the length of the desired key, e.g. 128 bits.

To establish a shared encryption key between an aircraft application entity and a ground application entity, we do the following:

KE = KDF(ZU,Y;len;000216||mechanism||W||Y|| XU,V)

Where

mechanism is the unique 8-bit identifier of the encryption mechanism in use. The mechanism we have defined (AES-128 in full-block CFB-mode) has the mechanism ID 0116.

4.2.1 Operational Requirements

There are three critical requirements for this scheme to be secure:

a. ZU,Y , the shared secret derived from static ECC Diffie-Hellman key agreement, must be secret to any outsider.

b. XU,V, the shared value that is unique per session, must actually be unique per session. That is, there must never be a case in which the same XU,V repeats for a given aircraft.

c. Only one encryption key is derived for application ground entity ID Y and aircraft entity ID W with ZU,Y and XU,V. That is, the same ID and public key must not be shared by multiple ground applications, or our proposed encryption mechanism will not provide adequate security.

4.2.2 Claimed Properties

The properties of the KDF (built using the SHA1 hash function) provide the following security properties for the whole key derivation mechanism:

a. Any alteration of even one bit of input effectively randomizes the key. This prevents any kind of protocol attacks based on reusing or replaying keys from different applciations or sessions. This property should also be guaranteed by SHA1.

b. An attacker who doesn’t know the shared secret ZU,Y has no way of learning anything about the agreed-upon key.

c. The inclusion of the encryption mechanism indicator in the KDF ensures that there is no chance of somehow deriving the same key for different ciphers, which could potentially be disasterous.

d. The use of the W and Y identifiers specifies this key for this aircraft and application and for this ground entity and application. The use of XU,V prevents replay or reuse of old shared encryption keys. When combined, this means that each key is specific to a single CMA session and a single (aircraft application entity, ground application entity) pair. As long as it is not possible for all of these values to be used to derive more than one key per CMA session, each key will be unique, and statistically independent of all other keys. (That is, in practice, an attacker given one key has no information about other keys.)

4.3 Encryption Mechanism

There are two main requirements for our encryption mechanism: it needs to be very secure, and it needs to result in no data expansion. Our proposed mechanism is the AES block cipher with 128-bit keys, in full-block CFB-mode, with a specific method of deriving the IV which is guaranteed to never repeat within a session. Our reasoning for this proposal appears below.

4.3.1 Meeting the Security Requirement

At present, essentially all of the cryptographic primitives in which we can have a lot of confidence are block ciphers, specifically triple-DES and AES. We can have confidence in these ciphers for three reasons:

a. They have seen a tremendous amount of analysis, and continue to be under scrutiny by the best cryptanalysts in the civilian world.

b. There is an extensive body of research on techniques for analyzing block ciphers. This body of research was largely developed on attacking DES (one third of what is done in triple-DES), and so there are good reasons to expect that we have the tools necessary to analyze block ciphers for weaknesses.

c. AES is known to have passed an internal review by the US National Security Agency. While we can't learn exactly what kind of review was done or what techniques may have been used in its analysis, it is reassuring to have evidence that cryptanalytic techniques known only in the classified literature (at least in the US) probably cannot be used to mount any kind of practical attack on AES.

d. To meet our security requirement, we believe the only acceptable ciphers are either triple-DES or AES. We prefer the use of AES, both because its more recent review by the NSA inspires confidence, and because its larger block size makes certain chaining modes easier to use securely. Additionally, it is likely to be much more efficient in software than triple-DES, and will continue to face scrutiny by the public cryptanalysis community in the years to come.

There are many other block cipher proposals in the literature, and some of them (such as IDEA) have withstood a great deal of scrutiny in the public cryptanalysis world. However, both AES and triple-DES have withstood still more scrutiny, and as both are suitable for this application, we could see no benefit to considering other block ciphers.

There are also a number of stream cipher proposals, such as RC4 and SEAL 3.0. None of these has faced the kind of scrutiny that AES and triple-DES have faced. More fundamentally, though, the public cryptanalysis community probably doesn’t yet have the tools necessary to really evaluate the strength of these stream ciphers. As new tools are developed, it’s quite plausible that new and devastating attacks will be developed against these ciphers. (The recent results of Shamir and Fleurher(sp?) on RC4 provide an illustration of this fact.) Because we expect changing ciphers to be expensive and difficult, we recommend using only ciphers in which we have a great deal of confidence.

4.3.2 Preventing Data Expansion

Block ciphers are generally used in "chaining modes" when encrypting bulk data, and the chaining modes themselves are standardized parts of the encryption process. There are two standard chaining modes that can be used to encrypt data without any expansion of their ciphertext. These are output feedback mode (OFB) and cipher feedback mode (CFB). The more commonly used cipher block chaining (CBC) mode either requires message expansion, or requires rather complicated additional processing of the end of the message to avoid it.

4.3.2.1 OFB Mode

OFB mode works as follows: An initialization vector (IV) is used to start the process. To encrypt the first plaintext block, the IV is encrypted by the block cipher, and the result is XORed into the plaintext block. The result of encrypting the IV once is encrypted again to generate a block to XOR into the second plaintext block, and so on. Thus, we have

X[-1] = IV

To encrypt block i:

 X[i] = Encrypt(X[i-1])

 C[i] = P[i] XOR X[i]

Note that if the last plaintext block is 5 bits long, there's no need to produce a ciphertext block of more than 5 bits. We thus avoid message expansion.

OFB mode has three potential security problems:

a. If the same IV is ever repeated for two messages, they will be encrypted by getting XORed with the same blocks. This potentially can leak a great deal of information. (The attacker can XOR the ciphertexts together, and receive the XOR of the two plaintexts. For ASCII text, a long pair of messages XORed together can typically be recovered. Even for less patterned plaintext, any part of one plaintext that is known can be used in this case to discover the corresponding part of the other plaintext.) This is best solved by choosing a guaranteed nonrepeating value to use as the IV. (Some of the recent problems with the 802.11 WEP specifications’ security involved this kind of problem.)

b. If an IV is ever randomly chosen to be some intermediate value of X[i] for one of the encrypted messages, we will also leak a lot of information. On average, we would expect this to leak about half as much information as a repeated IV. We can’t guarantee that this will not happen, but we can guarantee (given some set of system parameters) that the probability of its happening is extremely low.

c. Some older documents define OFB-mode with less than full-block feedback. However, this leads to short cycles and thus can cause security problems with the chaining mode, and so OFB mode is never used with less than full-block feedback.

Proper design of this system can remove any practical issues with either of these happening. However, for added security and simplicity of implementation, we recommend using a different non-expanding chaining mode.

4.3.2.2 CFB Mode

Our recommendation is to use full-block CFB mode. Full-block CFB-mode is conceptually somewhat similar to OFB-mode. It works as follows:

a. An IV the same size as the cipher block is chosen for each message to be encrypted. We treat this IV as the first ciphertext block.

b. Each plaintext block is encrypted by passing the previous ciphertext block through the cipher, and then XORing the result into the plaintext block. We thus have:

 C[i] = P[i] XOR Encrypt(C[i-1])

Once again, it is not necessary to include any extra bits in the final ciphertext block; there is thus no need for message expansion.

The reason we recommend using CFB-mode is that repeated IVs are far less dangerous. If there are ever two ciphertext blocks which are equal, this can be used to leak information about plaintexts. The probability of this happening for the sizes and numbers of messages used in this system is negligible. If, due to an implementation or other error, an IV is ever repeated, it typically will cause only a small leak of encrypted information. (The same thing will happen if an IV is ever chosen equal to some ciphertext block in a previously-encrypted message under this key.)

Note that CFB-mode can also be defined for less than full-block feedback, e.g. CFB-8 or CFB-1. However, there is no advantage to using such variants of CFB-mode within this system.

4.3.2.3 Nonstandard Modes

There are a number of other ways to prevent data expansion, including the use of counter-mode encryption and ciphertext stealing. However, since these more standard chaining modes meet our requirements, we can see little advantage to using a nonstandard mode.

4.3.3 Acceptable Variants

In this subsection, we consider acceptable variant encryption mechanisms. While we do not recommend adding more encryption mechanisms to the system (This adds complexity to the CMA logon, as the parties must somehow decide which encryption mechanism to use, for no visible security advantage.), any added encryption algorithms must follow the guidelines below.

4.3.3.1 Block Cipher Variants

AES or triple-DES may be used in OFB-mode, counter-mode, or in CBC-mode with Ciphertext Stealing to get secure, non-expanding encryption. While we see no advantage to this, there is also no major problem with it. Some care must be taken to derive the IV intelligently for each of these modes, but the mechanism we have proposed below for CFB-mode will work equally well for these other modes.

Any block cipher with a block size of at least 48 bits can be used in CFB-mode, OFB-mode, or counter-mode to do encryption for this system.

4.3.3.2 Stream Cipher Variants

Stream ciphers can be used with this system in two ways:

a. If the stream cipher supports a "resynch" operation, as does SEAL, the IV described above can be used as the resynch vector. If the IV is less than 17 bits, then this is not possible and the stream cipher must be rekeyed for each message.

b. If the stream cipher does not support a "resynch" operation (e.g., RC4), a new key must be generated. This should be generated as follows:

 K[IV] = KDF(KE;desired keylength;IV)

Note the dangers of rekeying a stream cipher with highly-patterned sets of keys: the recent results by Shamir and Fleurher show the potential damage this can do to a fielded system (802.11).

4.3.3.3 Acceptable Key Lengths

We strongly recommend that no ciphers with effective keylength below 100 bits be used for this system. While 80 bit keys are probably sufficient for the next few years, there are readily-available ciphers which offer 100 or more bits of effective keylength, including two-key triple-DES, three-key triple-DES, and AES. There appears to be no advantage to settling for a lower security level than 100 bits for symmetric encryption. Additionally, eliminating the need to upgrade the symmetric encryption mechanism every few years is worthwhile; chosing a barely-adequate key length today leaves the system vulnerable to weakness in a few years, if for some reason the system isn't upgraded to use longer keys.

4.4 IV Derivation for Air-to-Ground Messages

Having chosen an encryption mode and a cipher, we must next determine how the IVs will be selected.

The only important requirement for IVs in this system is that all messages sent under the same key must use different IVs, and that the IVs be chosen in a way not under the control of an attacker. In this system, the 16-bit sequence number used for authentication of messages makes this requirement easy to meet.

Let Count be the 2-byte counter of messages sent by this entity under this key, and Sender be a zero byte (0x00) if the sender is the aircraft, and a one byte (0x01) otherwise. The IV for each message is selected as:

IV = EK(Sender||Count||000000..00)

Where

a. Sender is 0016 when the message originates from the aircraft, and 0116 when it originates from the ground.

b. Count is the 16-bit counter value already used for replay detection in the message integrity mechanism. (Note that there are separate counters for messages originating from the aircraft and from the ground, and that each secure connection with an application entity has a pair of counters used only for messages sent over that secure connection.

c. EK() is encryption under AES-128 with the current encryption key that is in use. This complies with the latest NIST recommendations for chaining mode usage.

d. 000000..00 is zero-padding out to the full 128-bit block length of AES, or out to the full required length of the IV if some other cipher is used. (This would be 13 bytes for AES, but only 5 bytes for triple-DES.)

In words: We concatenate the sender byte, the two-byte counter, and enough binary zeros to get the IV the same size as the cipher block.

4.4.1 Claimed Properties

We have the following properties:

a. So long as the counter value never repeats for a given sender under a given key, neither does the IV repeat. Since this counter must not repeat, to avoid replay attacks on the authentication mechanisms already in place, we are able to guarantee that the IV will never repeat unless the authentication mechanism makes itself susceptible to replay attack. This apparently requires an implementation error to occur.

b. The counter value may be sent explicitly, or may be inferred from context. In either case, the counter value is known to the receiver, and no additional message expansion is needed.

c. The counter value is included in the MAC, so any attempt to mount an attack based on confusing the two sides about the proper value of that counter will force the MAC to fail.

d. It may seem counterintuitive that having such highly patterned IVs is acceptable. However, the block cipher is expected to behave like a large random table of entries; a highly-patterned IV should be no worse than a random-looking IV, in terms of security. If there are IVs with any pattern that can be chosen, which lead to decreased security, this represents a fundamental flaw in the underlying block cipher, and the cipher is probably unsuitable for use in this application even with random IVs.

4.5 Compression and Order of Operations

The order of operations (compression, encryption, authentication) in this system is very important for security. Recent results by Krawczyk (Krawczyk, "The Order of Encryption and Authentication for Protecting Communications," Crypto 2001, Springer, 2001), and older results by Anderson and Needham (Anderson and Needham, "Robustness principles for public key protocols", Crypto 1995, Springer-Verlag, 1995) , and Abadi and Needham (Abadi and Needham, "Prudent engineering practices for cryptographic protocols," IEEE Transactions on Software Engineering, 22(1):6-15, January 1996) show that the order in which each operation is done can be very important. Recent work by one of us (Kelsey, "Compression and Information Leakage," to appear at FSE 2002) has also demonstrated some potential problems with using compression with encryption.

Our recommended order of operations is as follows:

If compression is used in this system, the order of operations must be:

a. Compress the input, using a compressor that carries no state forward from any previous messages. (It is acceptable to have the compressor carry state forward, if reliable delivery is being provided, and if a message is never processed until all previous messages have been processed successfully.)

b. Encrypt the compressor output.

c. MAC the resulting ciphertext.

d. Send Ciphertext||MAC as the message.

otherwise, we do the following order:

a. Encrypt the plaintext.

b. MAC the resulting ciphertext.

c. Send Ciphertext||MAC as the message.

4.5.1 Analysis

There are several ways to do these operations that lead to acceptable security. We propose this specific order for the following reasons:

a. By MACing the ciphertext, we eliminate the risk of reaction-attacks and chosen-ciphertext attacks.

b. Because the IV is derived from the 16-bit counter, and because the MAC also includes the counter, a message will never be accepted with any confusion about the IV that should be used to decrypt it.

c. Because of the above, each message that is accepted is a one-to-one function of the plaintext. This means that MACing the ciphertext is equivalent to MACing the plaintext.

d. Because any compression that is used does not carry compressor state forward between messages, the compressor output is a one-to-one function of the compressor input. This means that the MAC on the ciphertext effectively guarantees the authenticity of the compressed text. (Similarly, if a message is never processed until all previous messages have been processed successfully, then this compressor output is a one-to-one function of its corresponding compressor input, since the prior compressor state is fixed.)

e. While there are attacks known which extract information about plaintext when it is being compressed before encryption, these attacks should pose no practical threat to this system.

4.5.1.1 Authentication

The simplest way to use a MAC to guarantee authenticity of a message is to MAC that message directly, and send the MAC along with the message. However, it's easy enough to see that this is equivalent to MACing the ciphertext along with all of the additional information used to decrypt it unambiguously. (Suppose this weren't the case; that is, that there were some way to encode a message M such that e(M) uniquely determined M, but were possible to find forgeries for with our MAC. Then an attacker could use this encoding rule on his own to find messages for which forgeries could also be found for MAC--an existential forgery attack on the MAC.)

This rule also works for compression. If we were to compress messages before MACing them, this would be dangerous if (and only if) there were some choice left to the receiver of the compressed message about how to decompress it. If any information (such as a compression context) is used to decompress the message, but is not somehow authenticated, then an attacker may be able to cause the receiver to receive and accept a different message than was sent to him, despite the MAC. Indeed, for *any* method of processing or interpreting data, this rule applies. (There are a great many protocol attacks on systems using this kind of trick; it's very important that we never let the security-relevant behavior of a system depend on unauthenticated messages or other information.)

4.5.1.2 Encryption

There are two more-or-less unrelated kinds of attack to consider against the encryption component:

a. Ciphertext only, known plaintext, and chosen plaintext attacks. These attacks are affected by the MAC only if the MAC leaks information about its input. If we ensure that the MAC we're using doesn't leak information about its input, then adding a MAC on either the plaintext or the ciphertext will not weaken the encryption in any way. We know this because it is known that CFB-mode encryption with IVs not under the control of an attacker leaks no information about its input plaintext, in the absence of ciphertext block collisions.

b. Chosen-ciphertext attacks. These attacks rely on the reaction of the receiver of a bogus ciphertext from the attacker. If the reaction of the receiver depends in some way that is visible to the attacker on the plaintext or encryption key, then a chosen ciphertext attack is possible. In other words, if an attacker can choose a ciphertext that he hasn't seen before and that will result in anything but a failed MAC, he can possibly carry out a chosen-ciphertext attack on the system. If the plaintext is a one-to-one function of the ciphertext, this translates to an existential forgery attack on the MAC. Note that chosen-ciphertext attacks against CFB-mode are known, but that the checking of the MAC on the ciphertext before decryption prevent them from working against this system. (However, also note that chosen-ciphertext attacks are not much of a practical threat to most real-world systems.)

4.5.1.3 Encryption and Authentication Together

For message i, the plaintext and ciphertext are in a one-to-one correspondence. That is, each possible plaintext has one ciphertext, and each possible ciphertext has its own corresponding plaintext. This is true because CFB-mode encryption is invertible given the key and IV. The key has been negotiated for this session; the IV is determined by i (for message i). Because i is also included in the MAC computation, there is no way for an attacker to confuse the receiver with a changed IV (which would change some of the decrypted plaintext).

By MACing the ciphertext, we make chosen-ciphertext attacks impossible. More importantly, we make “reaction attacks” against any compression algorithm used impossible.

4.5.1.4 Compression

Compression leaks information about its inputs in at least two ways:

a. By changing the output size of its result for different inputs.

b. By changing the amount of time taken to compress different pieces of data. It can also affect the security of authentication and encryption.

Compression can also cause other security problems, at least in principle:

c. If the compression context or dictionary is carried over from previous messages without authentication, then it is possible to defeat a secure MAC that covers only ciphertext by altering the decrypted and decompressed plaintext via the compression context.

d. If the receiver will react differently to invalid blocks of compressed text than to messages whose MACs fail, then the compression algorithm may be used to mount an adaptive chosen ciphertext attack on the encryption mechanism.

The more general information leaks from compression are harder to prevent, but are also quite hard to use in any practical attack on this system. However, certain kinds of information (such as the data format being sent in encrypted messages) is likely to be leaked if the data is compressed. It is not clear that this represents more information leakage than not encrypting the data, since different application data formats will take up different amounts of bandwidth with or without compression.

4.6 Using the Mechanism for Ground-to-Ground Encryption

As currently defined, ground-to-ground messages are individually signed, including a timestamp and the IDs of the sender and receiver to avoid replays of various kinds.

There are three simple additions needed to permit encryption to be used here, as well:

There needs to be some kind of message header specifying that encryption is being used, which will not be encrypted. That header also needs to include the sender's timestamp and ID, and a 64-bit random number.

 Header = (IDsender ; R)

Where

a. IDsender = the ATN ID of the sender.

b. R = a 128-bit random number.

An encryption key is derived as follows:

a. Z = ECDHKX(PKreceiver ,SKsender)

b. KE = KDF(Z;len;000316 ||mechanism||Header)

Where

(i) len is the key length requested (128 bits for AES).

(ii) mechanism is the hex value for the encryption mechanism being used. Presumably this is 0116 for AES-128 with full-block CFB-mode.

c. An all-zero IV is derived, and the data in the message other than the header is encrypted under the derived key KE.

d. The resulting ciphertext is signed using ECDSA, as is currently done for these messages.

e. The final message is Header||Ciphertext||Signature.

Note that if more than a small number of messages are exchanged between a given pair of ground entities in a day, the mechanism currently used for authenticating these messages is very inefficient. Our proposed addition to support encryption will be similarly inefficient in these cases.

4.7 Pitfalls

There are a number of potential pitfalls which should be discussed and understood.

If the bandwidth supported by this system changes, the analysis above changes. When the total number of messages sent becomes close to 2N/2, where N is the number of bits in the block cipher, small leaks of information become reasonably likely under CFB-mode, and much more dangerous in OFB-mode.

Under no circumstances may an application ignore message authentication failures and output a decrypted message whose MAC was incorrect. Doing so would lead to the possibility of an attacker learning some plaintext data. Applications MUST verify the MAC on the ciphertext before doing anything else with the message.

5 Legal Issues

5.1 ATN, Export and Encryption Software

Developers and end users are often concerned about export regulations when deploying security solutions, especially those that employ encryption. This section provides a summary of the current export regulations in the U.S. in order to illustrate the regulations that will apply to implementations of the ATN security solution. Countries other than the U.S. have different regulations, but the U.S. provides a reasonable example for our purposes.

The following is based upon Certicom’s best knowledge as of the date of this report. Encryption-related matters tend to be subject to a high degree of regulation, and are changeable (often upon little notice). In addition, Certicom is not in a position to offer legal advice: this is intended as general, high-level, and informational only.

5.1.1 The US Export Regulations on Encryption Technology
The Basic Premise. The U.S. government asserts that it has the right to control the export of software, hardware, and technology that has anything more than a minimal U.S. origin. At the same time, the U.S. government (through the Department of Commerce’s Bureau of Export Administration (“BXA”)) also regulates the re-export of non-U.S.-origin encryption technology from the U.S. Finally, unlike most other nations, the export regulations “follow” a U.S. origin product even after it has been exported (subject to certain limits). At present time the fact that some U.S.-origin technology has a commercially available foreign counterpart does not exempt the U.S. technology from regulations.

The Scheme. Due to the basic premise, all exports of encryption technology require either a license, or must fall into one or more limited exemptions from the license requirement. However, pressure from various sources has expanded the scope of the exemptions to the point where software vendors are no longer hamstrung in obtaining export approval. Over the past few years, the BXA has adopted a one-time classification and review scheme for encryption products. An application is sent to the BXA, along with some technical information about the nature of the product, and some product literature. Once the application has been submitted (via electronic filing), the product is immediately exportable to all nations on the “friendly” list (which amounts to the E.U. signatories and some mutual strategic partners): Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, Netherlands, Portugal, Spain, Sweden, UK, Australia, Czech Republic, Hungary, Japan, New Zealand, Norway, Poland, and Switzerland (as of 01/29/02). Notably absent from this list are U.S. allies such as Taiwan (Republic of China), and Israel. In general, exports of certain financial-specific applications, exports to foreign subsidiaries of U.S. companies, and exports to Canadian end-suers are have their own additional exemptions.

Unless the BXA notifies the developer otherwise, the application is deemed accepted after 30 full days from when the application was filed.

The Embargoed Nations and the Table of Denial Orders. In parallel with the licensing procedure, there are two additional situations that deserve special attention. There is a list of nations that are subject to a U.S. Government embargo- no one is allowed to trade with those nations without first obtaining a license or falling into an exemption (generally for food and medicine (and encryption is no different from paperclips here)): Cuba, Libya, Iran, Iraq, North Korea, Syria & Sudan. At the same time, various U.S. government agencies maintain a Table of Denial Orders listing persons to whom U.S. entities are prohibited from selling goods (except as attested for use solely w/in the U.S.). This list is available on the BXA’s website (although there may be a lag between what is displayed on the website and newly posted of Orders): http://www.bxa.doc.gov
Classifications For Encryption Products. Depending on the sophistication and flexibility of the encryption technology in a product submitted, that product may be classified as follows:

a. “No License Required”. Typically for items that are not too useful on their own, or which are not capable of being modified by end users or developers with respect to their encryption features. Example- smartcards. Despite the name, these items are still subject to the encryption export regulations (“EAR”), they just do not require a special export permit to ship anywhere (except to the Embargoed Nations).

b. “Retail”. These are items that are primarily targeted for sale, and usable by, end users without significant help from the developer other than that of minimal technical support. The end user should not be able to modify the software’s encryption features. Once classified by the BXA as “Retail” a product is exportable to all end users except the Embargoed Nations. Example- most application software.

c. “Non-retail” (closed cryptographic interface). These are items that fall outside the normal run of end-user software, and do require a sophisticated end-user of a great deal of customization/ support for each customer. However, the interface between the developer and the encryption features are such that: while a customer is able to choose among a set list of features, they are not able to take a third party cryptographic algorithm implementation and plug it into the product. Example- most cryptographic SDKs. Upon classification, this is exportable to any sort of end-user within the “friendly” list, and to any end users who is not a government entity in any non-Embargoed Nation.

d. “Non-retail” (open cryptographic interface). In this case, the encryption product is designed so that the user will find it relatively easy to plug in a strange cryptographic algorithm implementation and make the product work. Upon classification, this will only be exportable to end users within the “friendly” list.

Source Code. Source code is subject to the EAR, and may be classified along with object code products. Source code may be classified under a different (and typically more restrictive) classification than object code, depending upon the nature of the product.

What it means if you want to export outside the approved list. It is always possible to obtain an individual export license to export a particular product to a particular end user (or group of end-users) that doesn’t fall within the license exemptions noted above. It may require that the end user formally agree to comply with the terms of the license as a condition of obtaining the license.

5.2 Intellectual Property

The encryption solution described in this paper is believed to be unencumbered by patents. This belief is based on the following information.

DES is currently unencumbered: The US patent for DES (3,962,539) issued in 1972 and is now expired. The use of DES in CFB mode (DES-CFB) was specified in 1980 [FIPS-81] and appears to be unencumbered due to its extensive unchallenged use. (Patent holders have an obligation to prosecute infringement. An unreasonable delay in prosecution may prevent enforcement of the patent under the equitable doctrine of laches. Delays of more than seven years are considered unreasonable. This doctrine was upheld in the recent Festo decision by the US Court of Appeals for the Federal Circuit.)

AES is currently unencumbered, to the best knowledge of its inventors (as publically declared during the AES selection process). The use of AES in CFB mode (AES-CFB) is an obvious variant of DES-CFB mode and thus would fail the test of non-obviousness in patentability, hence AES-CFB is unlikely to be encumbered.

However please heed that no reliance should be placed on the information in this section. Legal advice must be provided in the course of an attorney-client relationship specifically with reference to all the facts of a particular situation. The information contained herein must not be relied upon as a substitute for obtaining specific legal advice from licensed counsel and does not absolve the readers from conducting their own due diligence.

6 Conclusions

In this paper, we have recommended a way to add encryption to the ATN system with the following properties:

a. Encrypted messages require no additional bandwidth.

b. Encryption can be integrated into the system in a straigthforward way, with very little impact on the rest of the system.

c. Encryption is only supported for messages that are also provided message authentication.

d. Encryption may be supported for ground-to-ground messages, and for session-establishing CM messages, with some additional complexity in the system.

6.1 Encryption and Key Derivation Recommendations

a. AES with 128-bit keys.

b. Full-block cipher feedback mode encryption.

c. IVs implicitly derived using the replay-protection counters already in place.

d. Key derivation based on the existing infrastructure for message authentication.

e. Compression (if any) always being done first, then encryption, then MAC calculation.

6.2 Alternatives

There are two areas of our proposals which have a number of possible alternatives:

6.2.1 Supporting Multiple Encryption Mechanisms

We have specified only one encryption mechanism. However, it is possible with some small modifications to add support for multiple encryption mechanisms. While we do not believe this is useful, it is possible at little additional cost. In order to add such support, the following changes are needed:

a. There must be a default encryption algorithm that is supported by all entities capable of handling encryption at all. This algorithm is always used with ground-to-ground encryption.

b. In CM-logon-request and related session-establishing messages, the aircraft must signal to the CMA which encryption algorithms it will support, in some order of preference. The straightforward way to do this is to include a sequence of one or more supported encryption algorithms in CM-logon-request and related messages.

c. In CM-logon-response, the CMA must indicate which encryption algorithm is to be used for its future communications with the aircraft, and also which algorithm is to be used for each ground application entity with which an encrypted session is being established. The straightforward way to do this is to include an additional value for each ground application entity whose public key is being sent up to the aircraft, specifying which encryption mechanism is to be used.

d. Each encryption mechanism must have a unique one-byte identifier established, to be used in the derivation of encryption keys. 0016 and 0016 should be considered as reserved.

e. The CMA should make the final decision of which encryption mechanism is to be used, and should indicate this to both the aircraft and the ground application entity.

6.2.2 Order of Operations

The choice of what order to do operations. While we have recommended the order we believe is most useful, there are a number of equally secure and reasonable alternatives. The two critical points here are:

a. Compression must take place before encryption, and must never carry any context from previous messages. That is, each message must be compressed independently.

b. If the MAC is computed over plaintext or the input to the compressor, the receiver must never reveal by its behavior whether a message which was received had an invalid decompressor input, or whether its MAC was invalid. Similarly, decrypted information from a message must never be displayed or used if the MAC on the message fails.

7 Bibliography

Krawczyk, "The Order of Encryption and Authentication for Protecting Communications," Advances in Cryptology—CRYPTO 2001, Springer, 2001

Anderson and Needham, "Robustness principles for public key protocols", Advances in Cryptology—CRYPTO 1995, Springer-Verlag, 1995.

Abadi and Needham, "Prudent engineering practices for cryptographic protocols," IEEE Transactions on Software Engineering, 22(1):6-15, January 1996.

Kelsey, "Compression and Information Leakage," Advances in Cryptology—Fast Software Encryption 2002, to appear.

Menezes, van Oorschot, Vanstone. Handbook of Applied Cryptography, CRC Press, 1996.

Bellare, Canetti, Krawczyk. “Keying Hash Functions for Message Authentication,” Advances in Cryptology—CRYPTO ’96, Springer-Verlag, 1996.

H. Krawczyk, M. Bellare, and R. Canetti. “HMAC: Keyed-hashing for message authentication,” RFC 2104, Feb. 1997

Dworkin, “NIST Special Publication 800-38A, 2001 Edition.”

ATN Working Group, “Application Security Solution for the Aeronautical Telecommunications Network,” WP 1808A, Revised 3 February 2000.

ATN Working Group, “Public Key Infrastructure for the Aeronautical Telecommunications Network,” W1S2W1713, November 2001.

NIST, “Advanced Encryption Standard,” FIPS 197, November 26, 2001.

Federal Information Processing Standards Publication 81, "DES Modes of Operation", NIST, 1980 December 2.

SUMMARY

This working paper proposes adding support for confidentiality of air-to-ground messages to the ATN system.

