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Status of This Memo

   This document is an Internet-Draft.  Internet Drafts are working

   documents of the Internet Engineering Task Force (IETF), its Areas,

   and its Working Groups.  Note that other groups may also distribute

   working documents as Internet Drafts.

   Internet Drafts are draft documents valid for a maximum of six

   months, and may be updated, replaced, or obsoleted by other documents

   at any time.  It is not appropriate to use Internet Drafts as

   reference material, or to cite them other than as a ‘‘working draft’’

   or ‘‘work in progress.’’

   To learn the current status of any Internet-Draft, please check

   the ‘‘1id-abstracts.txt’’ listing contained in the internet-drafts

   Shadow Directories on ds.internic.net (US East Coast), nic.nordu.net

   (Europe), ftp.isi.edu (US West Coast), or munnari.oz.au (Pacific

   Rim).

Abstract

   This memo describes extensions to the OSPF [Moy94] protocol to

   support QoS routes.  The focus of the document is on the algorithms

   used to compute QoS routes and on the necessary modifications to

   OSPF to support this function, e.g., the information needed, its

   format, how it is distributed, and how it is used by the QoS path

   selection process.  Aspects related to how QoS routes are established



   and managed are also discussed.  The goal of this document is to

   identify a framework and possible approaches to allow deployment of

   QoS routing capabilities with the minimum possible impact to the

   existing routing infrastructure.
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1. Introduction

   In this document we describe a set of proposed additions to the

   OSPF routing protocol (the additions are built on top of OSPF V2)

   to support Quality-of-Service (QoS) routing in IP. In particular,

   we discuss the metrics required to support QoS, the associated link

   advertisement mechanisms, the path selection algorithm, as well

   as aspects of route establishment (pinning and unpinning).  Our

   goals are to define an approach which while achieving the goals of

   improving performance for QoS flows (likelihood to be routed on a

   path capable of providing the requested QoS), does so with the least

   possible impact on the existing OSPF protocol.  Given the inherent

   complexity of QoS routing, achieving this goal obviously implies

   trading-off ‘‘optimality’’ for ‘‘simplicity’’, but we believe this

   to be required in order to facilitate deployment of QoS routing

   capabilities.

1.1. Overall Framework

   We consider a network (1) that supports both best-effort packets and

   packets with QoS guarantees.  The way in which the network resources

   are split between the two classes is irrelevant to our proposal,

   except for the assumption that each QoS capable router in the network

   is able to dedicate some of its resources to satisfy the requirements

   of QoS packets.  QoS capable routers are also assumed to be able to

   identify and advertise the amount of their resources that remain

   available for additional QoS flows.  In addition, we limit ourselves

   to the case where all the routers involved support the QoS extensions

   described in this document, i.e., we do not consider the problem of

   establishing a route in an heterogeneous environment with routers

   that are QoS-capable and others that are not.  Furthermore, in this

   document we focus on the case of unicast flows, although many of the

   additions we define are applicable to multicast flows as well.



   We assume that a flow with QoS requirements will specify them

   in some fashion that is accessible to the routing protocol.  For

   example, this could correspond to the arrival of an RSVP [RZB+96]

   PATH message, whose TSpec is passed to routing together with the

   destination address.  After processing such a request, the routing

   protocol returns a path that it deems the most suitable given the

   flow’s requirements.  Depending on the scope of the path selection

----------------------------

1. In this document we commit the abuse of notation of calling a

   ‘‘network’’ the interconnection of routers and networks through which

   we attempt to compute a QoS path.
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   process, this returned path could range from simply identifying the

   best next hop, i.e., a traditional hop-by-hop routing, to specifying

   all intermediate nodes to the destination, i.e., a source route.

   Note that this decision impacts the operation of the path selection

   algorithm as it translates into different requirements in order to

   construct and return the appropriate path information.  Note also

   that extension to multicast paths will impact differently a source

   routed and a hop-by-hop approach.

   In this document, we will focus on hop-by-hop routing.  The

   algorithms solutions for path computation and establishment can be

   easily modified for source routing and such extensions are discussed

   in appendix C.

   Once a suitable path has been identified, the flow is assigned to

   it (pinning) and remains assigned to it until it either releases

   the path (unpinning) or deems that it has become unsuitable, e.g.,

   because of link failure or unavailability of the necessary resources.

   Note that resource reservation and/or accounting should help limit

   the frequency of the latter.

   In this document, we focus on the aspect of selecting an appropriate

   path based on information on link metrics and flow requirements.

   There are obviously many other aspects that need to be specified in

   order to define a complete proposal for QoS routing.  Issues such as

   specifying the frequency of updates and the granularity of advertised

   changes to metrics, support for heterogenous areas with a mix of QoS

   capable and incapable routers, etc., require further study.  The

   discussion of a complete solution to these problems is, however,

   deferred to subsequent versions of this draft.

1.2. Simplifying Assumptions

   In order to achieve our goal of a minimum impact to the existing



   protocol, we impose certain restrictions on the range of requirements

   the QoS path selection algorithm needs to deal with directly.

   Specifically, a policy scheme is used to a priori prune from

   the network, those portions that would be unsuitable given the

   requirements of the flow.  This limits the ‘‘optimization’’ performed

   by the path selection to a containable set of parameters, which helps

   keep complexity at an acceptable level.  Specifically, the path

   selection algorithm will focus on selecting a path that is capable of

   satisfying the bandwidth requirement of the flow, while at the same

   time trying to minimize the amount of network resources that need to

   be allocated to support the flow, i.e., minimize the number of hops

   used.

Guerin, et al.            Expires 30 September 1997             [Page 2]



Internet Draft           QoS Routing Mechanisms            25 March 1997

   This focus on bandwidth is adequate in most instances, but does not

   fully capture the complete range of potential QoS requirements.  For

   example, a delay-sensitive flow of an interactive application could

   be put on a path using a satellite link, if that link provided a

   direct path and had plenty of unused bandwidth.  This would clearly

   be an undesirable choice.  Our approach to preventing such poor

   choices, is to assign delay-sensitive flows to a policy that would

   eliminate from the network all links with high propagation delay,

   e.g., satellite links, before invoking the path selection algorithm.

   In general, each existing policy would present to the path selection

   algorithm its correspondingly pruned network topology, and the same

   algorithm would then be used to generate an appropriate path.

   Another important aspect in minimizing the impact of QoS routing

   is to develop a solution that has the smallest possible computing

   overhead.  Additional computations are unavoidable, but it is

   desirable to keep the total cost of QoS routing at a level comparable

   to that of traditional routing algorithms.  In this document, we

   describe several alternatives to the path selection algorithm,

   that represent different trade-offs between simplicity, accuracy,

   and computational cost.  In particular, we specify algorithms

   that generate exact solutions based either on pre-computations or

   on-demand computations.  We also describe algorithms that allow

   pre-computations at the cost of some loss in accuracy, but with

   possibly lower complexity or greater ease of implementation.  It

   should be mentioned, that while several alternative algorithms are

   described in this document, the same algorithm needs to be used

   consistently within a given routing domain.  This requirement can be

   relaxed when a source routed approach is used as the responsibility

   of selecting a QoS path lies with a single entity, the origin of

   the request, which ensures consistency.  Hence, it may then be

   possible for each router to use a different path selection algorithm.

   However, in general, the use of a common path selection algorithm is

   recommended, if not necessary, for proper operation.



   The rest of this document is structured as follows.  In Section 2,

   we describe the path computation process and the information it

   relies on.  In Section 3, we briefly review some issues associated

   with path management and their implications.  In Section 4, we go

   over the extensions to OSPF that are needed in order to support the

   path selection process of Section 2.  Finally, several appendices

   provide details on the different path selection algorithms described

   in Section 2, elaborate on path management mechanisms, and outline

   several additional work items.
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2. Path Selection Information and Algorithms

   This section describes several path selection algorithms that

   can be used to generate QoS capable paths based on different

   trade-offs between accuracy, computational complexity, and ease of

   implementation.  In addition, the section also covers aspects related

   to the type of information, i.e., metrics, on which the algorithms

   operate, and how that information is made available, i.e., link state

   advertisements.  The discussion on these topics is of a generic

   nature, and OSPF specific details are provided in Section 4.

2.1. Metrics

   As stated earlier, the process of selecting a path that can satisfy

   the QoS requirements of a new flow relies on both the knowledge of

   the flow’s requirements and characteristics, and information about

   the availability of resources in the network.  In addition, for

   purposes of efficiency, it is also important for the algorithm to

   account for the amount of resources the network has to allocate in

   order to support a new flow.  In general, the network prefers to

   select the ‘‘cheapest’’ path among all paths suitable for a new flow.

   Furthermore, the network may also decide not to accept a new flow

   for which it identified a feasible path, if it deems the cost of the

   path to be too high.  Accounting for these aspects involves several

   metrics on which the path selection process is based.  They include:

    -  Link available bandwidth:  As mentioned earlier, we assume that

       most QoS requirements are derivable from a rate-related quantity,

       termed ‘‘bandwidth’’.  We further assume that associated with

       each link is a maximal bandwidth value, e.g., the link physical

       bandwidth or some fraction thereof that has been set aside for

       QoS flows.  Since for a link to be capable of accepting a new

       flow with given bandwidth requirements, at least that much

       bandwidth must be still available on the link, the relevant link



       metric is, therefore, the (current) amount of available (i.e.,

       unallocated) bandwidth.

    -  Hop-count:  This quantity is used as a measure of the path cost

       to the network.  A path with a smaller number of hops (that can

       support a requested connection) is typically preferable, since

       it consumes fewer network resources.  While as a general rule

       each edge in the graph on which the path is computed should be

       counted as one hop, some edges, specifically those that connect

       a transit network to a router, should not be taken into account.

       (See Appendix B for a detailed explanation.)
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    -  Policy:  As previously discussed, policies are used to identify

       the set of links in the network that need to be considered when

       running the path selection algorithm.  In particular, policies

       are used to prune from the network links that are incompatible,

       performance or characteristics wise, with the requirements of

       a flow.  A specific policy example of special importance, is

       the elimination of high latency links when considering path

       selection for delay sensitive flows.  The use of policies to

       handle specific requirements allows considerable simplification

       in the optimization task to be performed by the path selection

       algorithm.

2.2. Advertisement of Link State Information

   It is assumed that each router maintains an updated database of the

   network topology, including the current state (available bandwidth)

   of each link.  As described in Section 4, the distribution of link

   state (metrics) information is based on extending OSPF mechanisms.

   However, in addition to how link state information is distributed,

   another important aspect is when such distribution is to take place.

   Ideally, one would want routers to have the most current view

   of the bandwidth available on all links in the network, so that

   they can make the most accurate decision on which path to select.

   Unfortunately, this then calls for very frequent updates, e.g.,

   close to every time the available bandwidth of a link changes, which

   is neither scalable nor practical.  Alternatively, one may opt for

   a simple mechanism based on periodic updates, where the period of

   updates is determined based on a tolerable corresponding load on the

   network and the routers.  The main disadvantage of such an approach

   is that major changes in the bandwidth available on a link could

   remain unknown for a full period and, therefore, result in many

   incorrect routing decisions.



   As a result, we propose to use a simple hybrid update mechanism, that

   attempts to reconcile accuracy of link state information with the

   need for the smallest possible overhead.  Periodic updates are used,

   say every T seconds, to notify nodes of any change of more than ffi

   in the available bandwidth of a link, and event-driven updates are

   generated immediately whenever the change in available link bandwidth

   since the last update exceeds .  The values for T, ffi, and  depend

   on network size, link speed, processing capabilities, and overall

   traffic patterns, but typical values would be:  T  30sec, ffi   10%,

        40%.  Regardless of bandwidth changes, as in the current OSPF

   specifications, we also impose a minimum interval between consecutive

   updates, e.g., we do not allow any particular LSA to get updated more
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   than once every MinLSInterval seconds, e.g., 5, in order to prevent

   the possibility of overload.

2.3. Path Selection Algorithms

   There are several aspects to the path selection algorithms.  The

   main ones include the optimization criteria it relies on, the exact

   topology on which it is run, and when it is invoked.

   As mentioned before, invocation of the path selection algorithm can

   be either per flow, or when warranted by changes in link states when

   the algorithm used allows precomputation of paths (more on this

   below).

   The topology on which the algorithm is run is, as with the standard

   OSPF path selection, a directed graph where vertices (2) consist of

   routers and networks (transit vertices) as well as stub networks

   (non-transit vertices).  When computing a path, stub networks are

   added as a post-processing step, which is essentially similar to

   what is done with the current OSPF routing protocol.  In addition,

   for each policy supported on a router, the topology used by the

   path selection algorithm is correspondingly pruned to reflect the

   constraints imposed by the policy, and in some instances the flow

   requirements.

   The optimization criteria used by the path selection are reflected

   in the costs associated with each interface in the topology and how

   those costs are accounted for in the algorithm itself.  As mentioned

   before, the cost of a path is a function of both its hop count and

   the amount of available bandwidth.  As a result, each interface

   has associated with it a metric, that corresponds to the amount of

   bandwidth which remains available on this interface.  This metric

   is combined with hop count information to provide a cost value,

   in a manner that depends on the exact form of the path selection



   algorithm.  It will, therefore, be detailed in the corresponding

   sections below, but all the different alternatives that are described

   share a common goal.  That is, they all aim at picking a path with

   the minimum possible number of hops among those that can support

   the requested bandwidth.  When several such paths are available,

   the preference is for the path whose available bandwidth (i.e., the

   smallest value on any of the links in the path) is maximal.  The

   rationale for the above rule is the following:  we focus on feasible

   paths (as accounted by the available bandwidth metric) that consume

----------------------------

2. In this document, we use the terms node and vertex interchangeably.

Guerin, et al.            Expires 30 September 1997             [Page 6]



Internet Draft           QoS Routing Mechanisms            25 March 1997

   a minimal amount of network resources (as accounted by the hop-count

   metric); and the rule for selecting among these paths aims at

   balancing load as well as maximizing the likelihood that the required

   bandwidth will indeed be available.

   It should be noted that standard routing algorithms are typically

   single objective optimizations, i.e., they may minimize the

   hop-count, or maximize the path bandwidth, but not both.  Double

   objective path optimization is a more complex task, and, in

   general, it is an intractable problem [GJ79].  Nevertheless, as

   we will see, because of the specific nature of the two objectives

   being optimized (bandwidth and hop count), the complexity of our

   proposed algorithm(s) is competitive with even that of standard

   single-objective algorithms.

2.3.1. Algorithm for exact pre-computed QoS paths

   In this section, we describe a path selection algorithm, that for a

   given network topology and link metrics (available bandwidth) allows

   us to pre-compute all possible QoS paths, and also has a reasonably

   low computational complexity.  Specifically, the algorithm allows

   us to pre-compute for any destination a minimum hop count path with

   maximum bandwidth, and has a computational complexity comparable to

   that of a standard shortest path algorithm (3).

   The path selection algorithm is based on a Bellman-Ford (BF)

   shortest path algorithm, which is adapted to compute paths of maximum

   available bandwidth for all hop counts.  It is a property of the BF

   algorithm that, at its h-th iteration, it identifies the optimal (in

   our context:  maximal bandwidth) path between the source and each

   destination, among paths of at most h hops.  In other words, the

   cost of a path is a function of its available bandwidth, i.e., the

   smallest available bandwidth on all links of the path, and finding

   a minimum cost path amounts to finding a maximum bandwidth path.



   However, we also take advantage of the fact that the BF algorithm

   progresses by increasing hop count, to essentially get for free the

   hop count of a path as a second optimization criteria.

   Specifically, at the kth (hop count) iteration of the algorithm,

   the maximum bandwidth available to all destinations on a path of

   no more than k hops is recorded (together with the corresponding

   routing information).  After the algorithm terminates, this

----------------------------

3. See Appendix D for a more comprehensive discussion on the aspect of

   computational complexity.
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   information enables us to identify for all destinations and bandwidth

   requirements, the path with the smallest possible number of hops and

   sufficient bandwidth to accommodate the new request.  Furthermore,

   this path is also the one with the maximal available bandwidth among

   all the feasible paths with this minimum number of hops.  This is

   because for any hop count, the algorithm always selects the one with

   maximum available bandwidth.

   We now proceed with a more detailed description of the algorithm

   and the data structure used to record routing information, i.e.,

   the QoS routing table that gets built as the algorithm progresses

   (pseudo-code for the algorithm can be found in Appendix A).  As

   mentioned before, the algorithm operates on a directed graph

   consisting only of transit vertices (routers and networks), with

   stub-networks subsequently added to the path(s) generated by the

   algorithm.  The metric associated with each edge in the graph is the

   bandwidth available on the corresponding interface.  Let us denote

   by bn;mthe available bandwidth on the edge between vertices n and

   m.  The vertex corresponding to the router where the algorithm is

   being run, i.e., the computing router, is denoted as the ‘‘source

   node’’ for the purpose of path selection.  The algorithm proceeds to

   pre-compute paths from this source node to all possible destination

   networks and for all possible bandwidth values.  At each (hop count)

   iteration, intermediate results are recorded in a QoS routing table,

   which has the following structure:

The QoS routing table:

    -  a Kx H matrix, where K is the number of destinations (vertices

       in the graph) and H is the maximal allowed (or possible) number

       of hops for a path.

    -  The (n;h) entry is built during the hth iteration (hop count

       value) of the algorithm, and consists of two fields:



        *  bw:  the maximum available bandwidth, on a path of at most h

           hops between the source node (router) and destination node

           n;

        *  neighbor:  this is the routing information associated with

           the h (or less) hops path to destination node n, whose

           available bandwidth is bw.  In the context of hop-by-hop

           path selection (4), the neighbor information is simply the

           identity of the node adjacent to the source node on that

----------------------------

4. Modifications to support source routing are discussed in Appendix C.
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           path.  As a rule, the ‘‘neighbor’’ node must be a router and

           not a network (see Appendix B), the only exception being

           the case where the network is the destination node (and the

           selected path is the single edge interconnecting the source

           to it).

   Next, we provide additional details on the operation of the algorithm

   and how the entries in the routing table are being updated as the

   algorithm proceeds.  For simplicity, we first describe the simpler

   case where all edges count as ‘‘hops’’, and later explain how

   zero-hop edges (see Appendix B for further details) are handled.

   When the algorithm is invoked, the routing table is first initialized

   with all bw fields set to 0 and neighbor fields cleared.  Next, the

   entries in the first column (which corresponds to one-hop paths) of

   the neighbors of the computing router are modified in the following

   way:  the bw field is set to the value of the available bandwidth

   on the direct edge from the source.  The neighbor field is set to

   the identity of the neighbor of the computing router, i.e., the next

   router on the selected path.

   Afterwards, the algorithm iterates for at most H iterations

   (considering the above initial iteration as the first).  H can be

   either the maximum possible hop count of any path, i.e., an implicit

   value, or it can be set explicitly in order to limit path lengths to

   some maximum value (5) to better control worst case complexity.

   At iteration h, we first copy column h    -     1 into column h.  In

   addition, the algorithm keeps a list of nodes that changed their bw

   value in the previous iteration, i.e., during the h- 1-st iteration.

   The algorithm then looks at each link (n;m) and checks the maximal

   available bandwidth on an h-hop path to node m whose final hop is

   that link.  This amounts to taking the minimum between the bw field

   in entry (n;h -1) and the link metric value bn;m kept in the topology

   database.  If this value is higher than the present value of the bw



   field in entry (m;h), then a better (larger bw value) path has been

   found for destination m and with h hops.  The bw field of entry

   (m;h) is then updated to reflect this new value.  In the case of

   hop-by-hop routing, the neighbor field of entry (m;h) is set to the

   same value as in entry (n;h  -  1).  This records the identity of the

   first hop (next hop from the source) on the best path identified thus

   far for destination m and with h (or less) hops.

----------------------------

5. This maximum value should be larger than the length of the minimum

   hop-count path to any node in the graph.
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   We conclude by outlining how zero-hop edges are handled.  At each

   iteration h (starting with the first), whenever an entry (m;h) is

   modified, it is checked whether there are zero-cost edges (m;k)

   emerging from node m, which is the case when m is a transit network

   (see Appendix B).  In that case, we attempt to improve the entry of

   node k that corresponds to the h-th hop, i.e., entry (k;h) (rather

   than entry (k;h  +   1)), since the edge (m;k) should not count as an

   additional hop.  As with the regular operation of the algorithm, this

   amounts to taking the minimum between the bw field in entry (m;h)

   and the link metric value bm;kkept in the topology database.  If

   this value is higher than the present value of the bw field in entry

   (k;h), then the bw field of entry (k;h) is updated to this new value.

   In the case of hop-by-hop routing, the neighbor field of entry (k;h)

   is set, as usual, to the same value as in entry (m;h) (which is also

   the value in entry (n;h- 1)).

   Note that while for simplicity of the exposition, the issue of equal

   cost, i.e., same hop count and available bandwidth, is not detailed

   in the above description, it is straightforward to add this support.

   It only requires that the neighbor field be expanded to record the

   list of next (previous) hops, when multiple equal cost paths are

   present.

Addition of Stub Networks

   As was mentioned earlier, the path selection algorithm is run

   on a graph whose vertices consist only of routers and transit

   networks and not stub networks.  This is intended to keep the

   computational complexity as low as possible as stub networks can

   be added relatively easily through a post-processing step.  This

   second processing step is similar to the one used in the current OSPF

   routing table calculation [Moy94][Section 16, p.  148], with some

   differences to account for the QoS nature of routes.

   Specifically, after the QoS routing table has been constructed, all



   the router vertices are again considered.  For each router, stub

   networks whose link appears in the router’s links advertisement will

   be processed to determine QoS routes available to them.  The QoS

   routing information for a stub network is similar to that of routers

   and transit networks and consists of an extension to the QoS routing

   table in the form of an additional row.  The columns in that new row

   again correspond to paths of different hop counts, and contain both

   bandwidth and next hop information.  We also assume that an available

   bandwidth value has been advertised for the stub network.  As before,

   how this value is determined is beyond the scope of this document.

   The QoS routes for a stub network S are constructed as follows:
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   Each entry in the row corresponding to stub network S has its bws

   field initialized to zero and its neighbor set to null.  When stub

   network S is found in the link advertisement of router V, the value

   bw(S,h) in the hth column of the row corresponding to stub network S

   is updated as follows:

   bw(S,h) = min ( bw(S,h) ; min ( bw(V,h) , b(V,S) ) ),

   where bw(V,h) is the bandwidth value of the corresponding column

   for the QoS routing table row associated with router V, i.e.,

   the bandwidth available on an h hop path to V, and b(V,S) is the

   advertised available bandwidth on the link from V to S.  The above

   expression essentially states that the bandwidth of a h hop paths to

   stub network S is updated using a path through router V, only if the

   minimum of the bandwidth of the h hop path to V and the bandwidth on

   the link between V and S is larger than the current value.

   Update of the neighbor field proceeds similarly whenever the

   bandwidth of a path through V is found to be larger than or equal

   to the current value.  If it is larger, then the neighbor field

   of V in the corresponding column replaces the current neighbor

   field of S.  If it is equal, then the neighbor field of V in the

   corresponding column is concatenated with the existing field for S,

   i.e., the current set of neighbors for V is added to the current set

   of neighbors for S.

2.3.2. Algorithm for on-demand computation of QoS paths

   In the previous section, we described an algorithm that allows

   pre-computation of QoS routes.  However, it may be feasible in

   some instances, e.g., limited number of requests for QoS routes,

   to instead perform such computations on-demand, i.e., upon receipt

   of a request for a QoS route.  The benefit of such an approach is

   that depending on how often recomputation of pre-computed routes is



   triggered, on-demand route computation can yield better routes by

   using the most recent link metrics available.  Another benefit of

   on-demand path computation is the associated storage saving, i.e.,

   there is no need for a QoS routing table.  This is essentially the

   standard trade-off between memory and processing cycles.

   In this section, we briefly describe how a standard Dijkstra

   algorithm can, for a given destination and bandwidth requirement,

   generate a minimum hop path that can accommodate the required

   bandwidth and also has maximum bandwidth.  Because the Dijkstra

   algorithm is already used in the current OSPF route computation, only

   differences from the standard algorithm are described.  Also, while
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   for simplicity we do not consider here zero-hop edges (see Appendix

   B), the modification required for supporting them is straightforward.

   The algorithm essentially performs a minimum hop path computation,

   on a graph from which all edges, whose available bandwidth is less

   than that requested by the flow triggering the computation, have been

   removed.  This can be performed either through a pre-processing step,

   or while running the algorithm by checking the available bandwidth

   value for any edge that is being considered.  Another modification

   to a standard Dijkstra based minimum hop count path computation, is

   that the list of equal cost next (previous) hops which is maintained

   as the algorithm proceeds, needs to be sorted according to available

   bandwidth.  This is to allow selection of the minimum hop path with

   maximum available bandwidth.  Alternatively, the algorithm could also

   be modified to, at each step, only keep among equal hop count paths

   the one with maximum available bandwidth.  This would essentially

   amount to considering a cost that is function of both hop count and

   available bandwidth.

2.3.3. Algorithm for approximate pre-computed QoS paths

   This section outlines a Dijkstra-based algorithm that allows

   pre-computation of QoS routes for all destinations and bandwidth

   values.  The benefit of using a Dijkstra-based algorithm is a greater

   synergy with existing OSPF implementations.  The cost is, however, a

   loss in the ‘‘accuracy’’ of the pre-computed paths, i.e., the paths

   being generated may be of a larger hop count than needed.  This

   loss in accuracy comes from the need to rely on quantized bandwidth

   values, that are used when computing a minimum hop count path.  In

   other words, the range of possible bandwidth values that can be

   requested by a new flow is mapped into a fixed number of quantized

   values, and minimum hop count paths are generated for each quantized

   value.  For example, one could assume that bandwidth values are

   quantized as low, medium, and high, and minimum hop count paths are



   computed for each of these three values.  A new flow is then assigned

   to the minimum hop path that can carry the smallest quantized

   value, i.e., low, medium, or high, larger than or equal to what it

   requested.

   Here too, we discuss the elementary case where all edges count as

   ‘‘hops’’, and note that the modification required for supporting

   zero-hop edges is straightforward.

   As with the BF algorithm, the algorithm relies on a routing table

   that gets built as the algorithm progresses.  The structure of the

   routing table is as follows:
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The QoS routing table:

    -  a K x Q matrix, where K is the number of vertices and Q is the

       number of quantized bandwidth values.

    -  The (n;q) entry contains information that identifies the

       minimum hop count path to destination n, that is capable of

       accommodating a bandwidth request of at least bw[q] (the qth

       quantized bandwidth value).  It consists of two fields:

        *  hops:  the minimal number of hops on a path between the

           source node and destination n, that can accommodate a

           request of at least bw[q] units of bandwidth.

        *  neighbor:  this is the routing information associated with

           the minimum hop count path to destination node n, whose

           available bandwidth is at least bw[q].  With a hop-by-hop

           routing approach, the neighbor information is simply the

           identity of the node adjacent to the source node on that

           path.

   The algorithm operates again on a directed graph where vertices

   correspond to routers and transit networks.  The metric associated

   with each edge in the graph is as before the bandwidth available on

   the corresponding interface, where bn;mis the available bandwidth

   on the edge between vertices n and m.  The vertex corresponding to

   the router where the algorithm is being run is selected as the source

   node for the purpose of path selection, and the algorithm proceeds to

   compute paths to all other nodes (destinations).

   Starting with the highest quantization index, Q, the algorithm

   considers the indices consecutively, in decreasing order.  For each

   index q, the algorithm deletes from the original network topology

   all links (n;m) for which bn;m< bw[q], and then runs on the remaining

   topology a Dijkstra-based minimum hop count algorithm  (6) between



   the source node and all other nodes (vertices) in the graph.  Note

   that as with the Dijkstra used for on-demand path computation, the

   elimination of links such that bn;m  <  bw[q] could also be performed

   while running the algorithm.

   After the algorithm terminates, the q-th column in the routing table

   is updated.  This amounts to recording in the hops field the hop

----------------------------

6. Note that a Breadth-First-Search (BFS) algorithm

   [CLR90] could also be used.  It has a lower complexity, but would not

   allow reuse of existing code in an OSPF implementation.
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   count value of the path that was generated by the algorithm, and by

   updating the neighbor field.  As before, the update of the neighbor

   field depends on the scope of the path computation.  In the case

   of a hop-by-hop routing decision, the neighbor field is set to the

   identity of the node adjacent to the source node (next hop) on the

   path returned by the algorithm.  However, note that in order to

   ensure that the path with the maximal available bandwidth is always

   chosen among all minimum hop paths that can accommodate a given

   quantized bandwidth, a slightly different update mechanism of the

   neighbor field needs to be used in some instances.  Specifically,

   when for a given row, i.e., destination node n, the value of the

   hops field in column q is found equal to the value in column q  +  1

   (here we assume q  <  Q), i.e., paths that can accommodate bw[q] and

   bw[q+ 1] have the same hop count, then the algorithm copies the value

   of the neighbor field from entry (n;q+ 1) into that of entry (n;q).

Addition of Stub Networks

   This proceeds in a manner very similar to that of Section 2.3.1,

   except for some minor variations reflecting differences in the

   structure of the QoS routing table.  Specifically, the columns of

   the QoS routing table now correspond to quantized bandwidth values,

   and the bw field of a column entry has been replaced by a hops

   field.  Hence, the QoS routes for a stub network S are constructed

   as follows:

   Each entry in the row corresponding to stub network S has its hops

   field initialized to zero and its neighbor set to null.  When stub

   network S is found in the link advertisement of router V, the value

   hops(S,q) in the qth column of the row corresponding to stub network

   S is updated as follows:

   hops(S,q) = hops(V,q) IF (hops(V,q) <= hops(S,q) AND b(V ,S) >=

   bw[q]),



   where bw[q] is the qth quantized bandwidth value, and b(V,S) is

   the advertised available bandwidth on the link from V to S.  The

   above expression essentially states that the hop count of the path

   to stub network S capable of supporting a bandwidth allocation

   of bw[q], is updated using a path through router V, only if the

   corresponding path through V has fewer hops than the current one,

   and the bandwidth on the link between V and S is larger than bw[q].

   Update of the neighbor field proceeds similarly whenever the path

   through router V capable of supporting a bandwidth allocation of

   bw[q], is found to yield a hop count smaller than or equal to the

   current value.  If it is smaller, then the neighbor field of V in

   the corresponding column replaces the current neighbor field of S.

Guerin, et al.            Expires 30 September 1997            [Page 14]



Internet Draft           QoS Routing Mechanisms            25 March 1997

   If it is equal, then the neighbor field of V in the corresponding

   column is concatenated with the existing field for S, i.e., the

   current set of neighbors for V is added to the current set of

   neighbors for S.

2.4. Extracting Forwarding Information from Routing Table

   When the QoS paths are precomputed, the forwarding information for

   a flow with given destination and bandwidth requirement needs to be

   extracted from the routing table.  The case of hop-by-hop routing is

   much simpler compared to source routing.  This is because, only the

   next hop needs to be returned instead of a complete source route.

   Specifically, assume a new request to destination, say, d, and with

   bandwidth requirements B.  The index of the destination vertex

   identifies the row in the QoS routing table that needs to be checked

   to generate a path.  How the row is searched to identify a suitable

   path depends on which algorithm was used to construct the QoS routing

   table.  If the Bellman-Ford algorithm of Section 2.3.1 is used, the

   search proceeds by increasing index (hop) count until an entry is

   found, say at hop count or column index of h, with a value of the

   bw field which is greater than or larger than B.  This entry points

   to the initial information identifying the selected path.  If the

   Dijkstra algorithm of Section 2.3.3 is used, the first quantized

   value bBsuch that Bb     B  is first identified, and the associated

   column then determines the first entry in the QoS routing table that

   identifies the selected path.

   The next hop information is then directly retrieved from the neighbor

   information of the first entry pointed to in the QoS routing table.

   The case of source routing is discussed in Appendix C.



3. Establishment and Maintenance of QoS Routes

   In this section, we briefly review issues related to how QoS paths

   are established and maintained.  For both, there are functional and

   protocol aspects that need to be covered.

   The goal of QoS routing is to select paths for flows with QoS

   requirements, in such a manner as to increase the likelihood that the

   network will indeed be capable of satisfying them.  The use of QoS

   routing algorithms such as the ones described in this document have a

   number of implications above and beyond what is required when using

   standard routing algorithms.
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   First, a specific mechanism needs to be used to identify flows with

   QoS requirements, so that they can be assigned to the corresponding

   QoS routing algorithm.  In this section, we assume that the RSVP

   protocol [RZB+96] is used for that purpose.  Specifically, RSVP PATH

   messages serve as the trigger to query QoS routing.  Second, because

   of variations in the availability of resources in the network, routes

   between the same source and destination and for the same QoS, may

   often differ depending on when the request is made.  However, it is

   important to ensure that such changes are not always reflected on

   existing paths.  This is to avoid potential oscillations between

   paths and limit changes to cases where the initial selection turns

   out to be inadequate.

   As a result, some state information needs to be associated with a

   QoS route to determines its current validity, i.e., should the QoS

   routing algorithm be queried to generate a new and potentially better

   route, or does the current one remain adequate.  We say that a path

   is ‘‘pinned’’ when its state specifies that QoS routing need not be

   queried anew, while a path is considered ‘‘unpinned’’ otherwise.

   The main issue is then to define how, when, and where route pinning

   and unpinning is to take place.  In our context, where the RSVP

   protocol is used as the vehicle to request QoS routes, we also want

   this process to be as synergetic as possible with the existing RSVP

   state management.  In particular, our goal is to support pinning and

   unpinning of routes in a manner consistent with RSVP soft states

   while requiring minimal changes to the RSVP processing rules.

   It should be noted that some changes are unavoidable, especially

   to the interface between RSVP and routing.  Specifically,

   QoS routing requires, in addition to the current source and

   destination addresses, at a minimum, knowledge of the flow’s traffic

   characteristics (TSpec), and possibly also service types (as per

   the information in the Adspec), PHOP, IP TTL value, etc.  In this

   document, we assume that the information provided by RSVP to QoS

   routing includes at least the sender TSpec in addition to the source



   and destination addresses.  While such changes seem unavoidable, our

   goal is again to keep them as small as possible and also to avoid any

   change to the existing RSVP message format.

   Specifically, we assume interactions between RSVP and routing that

   are very similar to what is currently defined.  During the processing

   of RSVP PATH messages, RSVP queries (QoS) routing to obtain the

   next hop(s) for forwarding the PATH message.  The PATH message is

   then forwarded on the interface(s) returned by (QoS) routing.  As

   mentioned before, the sender TSpec is part of the information made

   available to routing, and a QoS routing algorithm selects the next

   hop along a path to the destination that is most likely to support

   the flow specified by the sender TSpec.  Thus, forwarding the PATH
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   message along this next hop should improve the likelihood of the

   reservation request succeeding during RESV message processing.  In

   particular, RESV messages, if any, propagate as before in the reverse

   direction of the PATH messages and attempt to reserve the required

   resources along the path delineated by PATH messages.

   In the context of the above hop-by-hop routing, there are two main

   issues associated with the pinning and unpinning of QoS paths.

    1. Detection of loops that may be caused by inconsistencies in the

       QoS routes returned by QoS routing at different nodes.  Such

       inconsistencies are typically transient, but it is important

       that the pinning of a path does not result in the formation of

       permanent loops .

    2. Query of a new QoS route in case of failures.  An example of

       such failures is a reservation failure because the RESV message

       arrived substantially later after the QoS route was initially

       selected.  Other failures include the usual link failures, and in

       general it is important to allow QoS routing to become aware of

       the failure and select a better route if one is available.

   The QoS path management scheme proposed here addresses the above two

   issues based on the following two design rules:

    1. What is pinned is a ‘‘path’’ taken by a specific RSVP flow and

       not a ‘‘route’’ as computed by the routing algorithm.  Hence

       pinning and unpinning are RSVP domain operations, and as a result

       completely independent of the specific QoS routing algorithm

       being used.

    2. Path pinning and unpinning is kept ‘‘soft’’ by tying it to the

       existing RSVP soft state mechanism.  In other words, we rely on

       existing RSVP refreshes and time-out mechanisms to detect the

       state changes that trigger pinning and unpinning of paths.  In



       addition, such changes are triggered only on the basis of current

       RSVP state information.

   Appendix F specifies how the above two rules translate into the

   conditions and processing rules for pinning and unpinning paths,

   that address the problem of loops while also enabling reactions to

   failures.

4. OSPF Protocol Enhancements

   As stated above, a goal of this work is to limit the additions to the

   existing OSPF V2 protocol, while still providing the required level
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   of support for QoS based routing.  To this end, all of the existing

   OSPF mechanisms, data structures, advertisements, and data formats

   remain in place.  The purpose of this section of the document is to

   list the enhancements to the OSPF protocol to support QoS as outlined

   in the previous sections.

4.1. QoS -- Optional Capabilities

   The OSPF Options field is present in OSPF Hello packets, Database

   Description packets and all LSAs.  The Options field enables OSPF

   routers to support (or not support) optional capabilities, and to

   communicate their capability level to other OSPF routers.  Through

   this mechanism, routers of differing capabilities can be mixed with

   an OSPF routing domain.

   This document describes one of the Option bits:  the Q-bit (for QoS

   capability).  The Q-bit is set in router, network, and summary links

   advertisements, and is used to identify routers and networks that

   support (or do not support) QoS routing as defined in this document.

   When the Q-bit is set in a router or summary links link state

   advertisement, it means that there are QoS fields to process in the

   packet.  When the Q-bit is set in a network link state advertisement

   it means that the network described in the advertisement is QoS

   capable.

            -------------------------------

           | * | Q | DC| EA|N/P| MC| E | T |

            -------------------------------

   The Q-bit is in its semantics very similar to the T-bit and QoS

   capability can be viewed just as an extension of TOS-capabilities.

   This similarity will be reinforced by the encoding introduced



   further in this section.  However, one important difference remains

   between TOS and QOS capabilities.  A router that does not have TOS

   capabilities forwards packets along TOS 0 paths.  Additionally,

   TOS metrics that are not advertised are assumed to have the same

   cost as TOS 0.  In case of QoS resources such as bandwidth, this

   does not make sense and could possibly introduce routing loops

   due to different criteria for which the routes are optimized.

   Therefore, if no route exists through routers all supporting QoS or

   any of those does not provide the necessary metric for the resource

   considered, communication with the requested quality of service is

   not possible.  Since each of the router link directions is described

   in an independent LSA, even a uni-directional failure to communicate

Guerin, et al.            Expires 30 September 1997            [Page 18]



Internet Draft           QoS Routing Mechanisms            25 March 1997

   is possible since the availability of a resource metric in one

   direction does not guarantee its accessibility for the other one.

4.2. Encoding Resources as Extended TOS

   Introduction of QoS should ideally not influence the compatibility

   with existing OSPFv2 routers.  To achieve this goal, necessary

   extensions in packet formats must be defined in a way that either

   is understood by OSPFv2 routers, ignored or in the worst case

   ‘‘gracefully’’ misinterpreted.  Encoding of QoS metrics in the

   TOS field which fortunately enough is longer in OSPF packets

   than officially defined in [Alm92], allows us to mimic the new

   facility as extended TOS capability.  OSPFv2 routers will either

   disregard these definitions or consider those unspecified.  Specific

   precautions are taken to prevent careless OSPF implementations

   from influencing traditional TOS routing when misinterpreting the

   extension introduced.

   For QoS resources, 32 combinations are available through the use

   of the fifth bit in TOS fields contained in different LSAs.  Since

   [Alm92] defines TOS as being four bits long, this definition never

   conflicts with existing values.  Additionally, to prevent naive

   implementations that do not take all bits of the TOS field in OSPF

   packets into considerations, the definitions of the ‘QoS encodings’

   is aligned in their semantics with the TOS encoding.  Only bandwidth

   and delay are specified as of today and their values map onto

   ‘maximize throughput’ and ‘minimize delay’ if the uppermost bit is

   not taken into account.  Accordingly, link reliability and jitter

   could be defined later if necessary.

        OSPF encoding   RFC 1349 TOS values

        ___________________________________________

        0               0000 normal service



        2               0001 minimize monetary cost

        4               0010 maximize reliability

        6               0011

        8               0100 maximize throughput

        10              0101

        12              0110

        14              0111

        16              1000 minimize delay

        18              1001

        20              1010

        22              1011

        24              1100

        26              1101
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        28              1110

        30              1111

        OSPF encoding   ‘QoS encoding values’

        -------------------------------------------

        32             10000

        34             10001

        36             10010

        38             10011

        40             10100 bandwidth

        42             10101

        44             10110

        46             10111

        48             11000 delay

        50             11001

        52             11010

        54             11011

        56             11100

        58             11101

        60             11110

        62             11111

        Representing TOS and QoS in OSPF.

4.2.1. Encoding bandwidth resource

   Given the fact that the actual metric field in OSPF packets only

   provides 16 bits to encode the value used and that links supporting

   bandwidth ranging into Gbits/s are becoming reality, linear

   representation of the available resource metric is not feasible.  The

   solution is exponential encoding using appropriately chosen implicit

   base value and number bits for encoding mantissa and the exponent.



   Detailed considerations leading to the solution described are not

   presented here but can be found in [Prz95].

   Given a base of 8, the 3 most significant bits should be reserved for

   the exponent part and the remaining 13 for the mantissa.  This allows

   a simple comparison for two numbers encoded in this form, which is

   often useful during implementation.

   The following table shows bandwidth ranges covered when using

   different exponents and the granularity of possible reservations.

        exponent
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        value x         range (2^13-1)*8^x      step 8^x

        -------------------------------------------------

        0               8,191                   1

        1               65,528                  8

        2               524,224                 64

        3               4,193,792               512

        4               33,550,336              4,096

        5               268,402,688             32,768

        6               2,147,221,504           262,144

        7               17,177,772,032          2,097,152

          Ranges of Exponent Values for 13 bits,

               base 8 Encoding, in Bytes/s

   The bandwidth encoding rule may be summarized as:

    1. represent available bandwidth in 16 bit field as a 3 bit exponent

       (with assumed base of 8) followed by a 13 bit mantissa as shown

       below

               0       8       16

               |       |       |

               -----------------

              |EXP| MANT        |

               -----------------

    2. advertise 2’s complement of the above representation.

   Thus, the above encoding advertises a numeric value that is

        216- 1-(exponential encoding of the available bandwidth):



   This has the property of advertising a higher numeric value for lower

   available bandwidth, a notion that is consistent with that of cost.

   Although it may seem slightly pedantic to insist on the property

   that less bandwidth is expressed higher values, it has, besides

   consistency, a robustness aspect in it.  A router with a poor OSPF

   implementation could misuse or misunderstand bandwidth metric as

   normal administrative cost provided to it and compute spanning trees

   with a ‘‘normal’’ Dijkstra.  The effect of a heavily congested link

   advertising numerically very low cost could be disastrous in such

   a scenario.  It would raise the link’s attractiveness for future

   traffic instead of lowering it.  Evidence that such considerations
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   are not speculative, but similar scenarios have been encountered, can

   be found in [Tan89].

   Concluding with an example, assume a link with bandwidth of 8 Gbits/s

   = 10243Bytes/s, its encoding would consist of an exponent value of 6

   since 10243=4; 096*86, which would then have a granularity of 86 260

   kBytes/s.  The associated binary representation would then be %(110)

   0 1000 0000 0000% or 53,248 (7).  The bandwidth cost (advertised

   value) of this link when it is idle, is then the 2’s complement of

   the above binary representation, i.e., %(001) 1 0111 1111 1111% which

   corresponds to a decimal value of (216- 1)- 53;248 = 12;287.  Assuming

   now a current reservation level of of 6;400 Mbits/s = 200   *   10242,

   there remains 1;600 Mbits/s of available bandwidth on the link.  The

   encoding of this available bandwidth of 1’600 Mbits/s is 6;400  * 85,

   which corresponds to a granularity of 85     30 kBytes/s, and has a

   binary representation of %(101) 1 1001 0000 0000% or decimal value

   of 47,360.  The advertised cost of the link with this load level, is

   then %(010) 0 0110 1111 1111%, or (216- 1)- 47;360 =18;175.

   Note that the cost function behaves as it should, i.e., the less

   bandwidth is available on a link, the higher the cost and the less

   attractive the link becomes.  Furthermore, the targeted property of

   better granularity for links with less bandwidth available is also

   achieved.  It should, however, be pointed out that the numbers given

   in the above examples match exactly the resolution of the proposed

   encoding, which is of course not always the case in practice.  This

   leaves open the question of how to encode available bandwidth

   values when they do not exactly match the encoding.  The standard

   practice is to round it to the closest number.  Because we are

   ultimately interested in the cost value for which it may be better

   to be pessimistic than optimistic, we choose to round costs up and,

   therefore, bandwidth down.

4.2.2. Encoding Delay



   Delay is encoded in microseconds using the same exponential method

   as described for bandwidth except that the base is defined to be 4

   instead of 8.  Therefore the maximum delay that can be expressed is

   (213 -1) *47 134 seconds.

----------------------------

7. exponent in parenthesis
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4.3. Packet Formats

   Given the extended TOS notation to account for QoS metrics, no

   changes in packet formats are necessary except for the introduction

   of Q-bit in the options field.  Routers not understanding the Q-bit

   should either not consider the QoS metrics distributed or consider

   those as ‘unknown’ TOS.

4.4. Calculating the Inter-area Routes

   This document proposes a very limited use of OSPF areas, that is, it

   is assumed that summary links advertisements exist for all networks

   in the area.  This document does not discuss the problem of providing

   support for area address ranges and QoS metric aggregation.  This is

   left for further studies.

4.5. Open Issues

   Support for AS External Links, Virtual Links, and incremental updates

   for summary link advertisements are not addressed in this document

   and are left for further study.  For Virtual Links that do exist, it

   is assumed for path selection that this links are non-QoS capable

   even if the router advertises QoS capability.  Also, as stated

   earlier, this document does not address the issue of non-QoS routers

   within a QoS domain.
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                               APPENDICES

A. Pseudocode for BF Algorithm

Note:  The pseudocode below assumes a hop-by-hop forwarding approach in

   updating the neighbor field.  The modifications needed to support

   a source routed approach are straightforward.  The pseudocode also

   does not handle equal cost multi-paths for simplicity, but the

   modification needed to add this support are straightforward.

Input:

  V = set of vertices, labeled by integers 1 to N.

  L = set of edges, labeled by ordered pairs (n,m) of vertex labels.

  s = source vertex (at which the algorithm is executed).

  For all edges (n,m) in L:

    * b(n,m) = available bandwidth (according to last received update)

    on interface associated with the edge between vertices n and m.

    * If(n,m) outgoing interface corresponding to edge (n,m) when n is

      a router.

  H = maximum hop-count (at most the graph diameter).

Type:

  tab_entry: record

                 bw = integer,

                 neighbor = integer 1..N.

Variables:

  TT[1..N, 1..H]: topology table, whose (n,h) entry is a tab_entry record,
such

                  that:

                    TT[n,h].bw is the maximum available bandwidth (as known

                      thus far) on a path of at most h hops between

                      vertices s and n,

                    TT[n,h].neighbor is the first hop on that path (a neighbor

                      of s). It is either a router or the destination n.



  S_prev: list of vertices that changed a bw value in the TT table

          in the previous iteration.

  S_new: list of vertices that changed a bw value (in the TT table etc.\ ) in
t

he

         current iteration.

The Algorithm:

begin;

  for n:=1 to N do  /* initialization */

  begin;
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    TT[n,0].bw := 0;

    TT[n,0].neighbor := null

    TT[n,1].bw := 0;

    TT[n,1].neighbor := null

  end;

  TT[s,0].bw := infinity;

  reset S_prev;

  for all neighbors n of s do

  begin;

    TT[n,1].bw := max( TT[n,1].bw, b[s,n]);

    if (TT[n,1].bw = b[s,n]) then TT[n,1].neighbor := If(s,n);

             /* need to make sure we are picking the maximum */

             /* bandwidth path for routers that can be reached */

             /* through both networks and point-to-point links */

    if ( (n is a router) and ({n} not in S_prev) )

       then  S_prev :=  S_prev union {n}

             /* only routers are added to S_prev, but we need to */

             /* check they are not already included in S_prev */

    else     /* n is a network: */

             /* proceed with network--router edges, without */

             /* counting another hop */

    for all (n,k) in L, k <> s, do

             /* i.e., for all other neighboring routers of n */

    begin;

      TT[k,1].bw := max( min( TT[n,1].bw, b[n,k]), TT[k,1].bw );

             /* In case k could be reached through another path */

             /* (a point-to-point link or another network) with */

             /* more bandwidth, we do not want to update TT[k,1].bw */

      if (min( TT[n,1].bw, b[n,k]) = TT[k,1].bw )

             /* If we have updated TT[k,1].bw by going through */

             /* network n  */

         then TT[k,1].neighbor := If(s,n);

             /* neighbor is interface to network n */

      if ( {k} not in S_prev) then S_prev :=  S_prev union {k}



             /* only routers are added to S_prev, but we again need */

             /* to check they are not already included in S_prev */

    end

  end;

  for h:=2 to H do   /* consider all possible number of hops */

  begin;

    reset S_new;

    for all vertices m in V do

    begin;

      TT[m,h].bw := TT[m,h-1].bw;

      TT[m,h].neighbor := TT[m,h-1].neighbor
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    end;

    for all vertices n in S_prev do

             /* as shall become evident, S_prev contains only routers */

    begin;

      for all edges (n,m) in L do

      if min( TT[n,h-1].bw, b[n,m]) > TT[m,h].bw then

      begin;

        TT[m,h].bw := min( TT[n,h-1].bw, b[n,m]);

        TT[m,h].neighbor := TT[n,h-1].neighbor;

        if m is a router then S_new :=  S_new union {m}

             /* only routers are added to S_new */

        else /* m is a network: */

             /* proceed with network--router edges, without counting them as
*/

             /* another hop */

        for all (m,k) in L, k <> n,

             /* i.e., for all other neighboring routers of m */

        if min( TT[m,h].bw, b[m,k]) > TT[k,h].bw then

        begin;

             /* Note: still counting it as the h-th hop, as (m,k) is a */

             /* network--router edge */

          TT[k,h].bw := min( TT[m,h].bw, b[m,k]);

          TT[k,h].neighbor := TT[m,h].neighbor;

          S_new :=  S_new union {k}

             /* only routers are added to S_new */

        end

      end

    end;

    S_prev := S_new;

            /* the two lists can be handled by a toggle bit */

    if S_prev=null then h=H+1   /* if no changes then exit */

  end;

end.



B. Zero-Hop Edges

   The need to handle zero-hop edges is due to the potential presence

   of multiple access networks, e.g., T/R, E/N, or ATM, to interconnect

   routers.  Such entities are also represented by means of a vertex

   in the current OSPF operation.  Clearly, in such cases a network

   connecting two routers should be considered as a single hop path

   rather than a two hop path.  For example, consider three routers

   A, B, and C connected over an Ethernet network N, which the OSPF

   topology represents as:

   In the above example, although there are directed edges in both

   directions, an edge from the network to any of the three routers
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 A----N----B

      |

      |

      C

   must have zero ‘‘cost’’, so that it is not counted twice.  It should

   be noted that when considering such environments in the context

   of QoS routing, it is assumed that some entity is responsible

   for determining the ‘‘available bandwidth’’ on the network.  The

   specification of the operation of such an entity is beyond the scope

   of this document.

C. Source Routing Support

   As mentioned before, the scope of the path selection process can

   range from simply returning the next hop on the QoS path selected for

   the flow, to specifying the complete path that was computed, i.e., a

   source route.  Obviously, the information being returned by the path

   selection algorithm differs in these two cases, and constructing it

   imposes different requirements on the path computation algorithm and

   the data structures it relies on.  While the presentation of the path

   computation algorithms focused on the hop-by-hop routing approach,

   the same algorithms can be applied to generate source routes with

   minor modifications.  These modifications and how they facilitate

   constructing source routes are discussed next.

   The general approach to facilitate construction of source routes is

   to update the neighbor field differently from the way it is done

   for hop-by-hop routing as described in Section 2.  Recall that in

   the path computation algorithms the neighbor field is updated to

   reflect the identity of the node adjacent to the source node on the

   partial path computed.  This facilitates returning the next hop at



   the source for the specific path.  In the context of source routing,

   the neighbor information is updated to reflect the identity of the

   previous router on the path.

   With this change, the basic approach used to extract the complete

   list of verti ces on a path from the neighbor information in the

   QoS routing table is to proceed recursively from the destination to

   the origin vertex.  The path is extracted by stepping through the

   precomputed QoS routing table from vertex to vertex, and identifying

   at each step the corresponding neighbor (precursor) information.

   Once the source router is reached, the concatenation of all the

   neighbor fields that have been extracted forms the desired source
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   route.  This applies to the source-routed versions of both algorithms

   of Sections 2.3.1 and 2.3.3.

   Specifically, assume a new request to destination, say, d, and with

   bandwidth requirements B.  The index of the destination vertex

   identifies the row in the QoS routing table that needs to be checked

   to generate a path.  How the row is searched to identify a suitable

   path depends on which algorithm was used to construct the QoS routing

   table.  If the Bellman-Ford algorithm of Section 2.3.1 is used, the

   search proceeds by increasing index (hop) count until an entry is

   found, say at hop count or column index of h, with a value of the

   bw field which is greater than or larger than B.  This entry points

   to the initial information identifying the selected path.  If the

   Dijkstra algorithm of Section 2.3.3 is used, the first quantized

   value bBsuch that Bb     B  is first identified, and the associated

   column then determines the first entry in the QoS routing table that

   identifies the selected path.

   Once this first entry has been identified, reconstruction of the

   complete list of vertices on the path proceeds similarly, whether

   the table was built using the algorithm of Sections 2.3.1 or 2.3.3.

   Specifically, in both cases, the neighbor field in each entry points

   to the previous node on the path from the source node and with the

   same bandwidth capabilities as those associated with the current

   entry.  The complete path is, therefore, reconstructed by following

   the pointers provided by the neighbor field of successive entries.

   In the case of the Bellman-Ford algorithm of Section 2.3.1, this

   means moving backwards in the table from column to column, using at

   each step the row index pointed to by the neighbor field of the entry

   in the previous column.  Each time, the corresponding vertex index

   specified in the neighbor field is pre-pended to the list of vertices

   constructed so far.  Since we start at column h, the process ends

   when first column is reached, i.e., after h steps, at which point

   the list of vertices making up the path has been reconstructed.



   In the case of the Dijkstra algorithm of Section 2.3.3, the

   backtracking process is similar although slightly different because

   of the different relation between paths and columns in the routing

   table, i.e., a column now corresponds to a quantized bandwidth value

   instead of a hop count.  The backtracking now proceeds along the

   column corresponding to the quantized bandwidth value needed to

   satisfy the bandwidth requirements of the flow.  At each step, the

   vertex index specified in the neighbor field is pre-pended to the

   list of vertices constructed so far, and is used to identify the next

   row index to move to.  The process ends when an entry is reached

   whose neighbor field specifies the origin vertex of the flow.  Note

   that since there are as many rows in the table as there are vertices
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   in the graph, i.e., N, it could take up to N steps before the

   process terminates.

   Note that the identification of the first entry in the routing table

   is identical to what was described for the hop-by-hop routing case.

   However, as described in this section, the update of the neighbor

   fields while constructing the QoS routing tables, is being performed

   differently in the source and hop-by-hop routing cases.  Clearly, two

   different neighbor fields can be kept in each entry and updates to

   both could certainly be performed jointly, if support for both source

   routing and hop-by-hop routing is needed.

D. Computational Complexity

   One generic aspect of the algorithmic complexity of computing

   QoS paths is the efficiency of the shortest path algorithm used.

   Specifically, in this document, we have described approaches based on

   both Bellman-Ford and Dijkstra shortest paths algorithms.  Dijkstra’s

   algorithm has traditionally been considered more efficient for

   standard shortest path computations because of its lower worst case

   complexity.  However, the answer is not as simple as may appear, and

   in this section we briefly review a number of considerations, in

   particular in the context of multi-criteria QoS paths, which indicate

   that a BF approach may often provide a lower complexity solution.

   The asymptotic worst-case complexity of the Dijkstra algorithm is

   O(NlogN   +   M), where N is the number of vertices in the graph,

   and M the number of edges.  However, this bound is obtained

   under the assumption of a Fibonnaci heap implementation of the

   Dijkstra algorithm, which is impractical due to the large constants

   involved [CLR90].  In practice, the Dijkstra algorithm is typically

   implemented using binary heaps, for which the asymptotic worst-case

   bound is O(MlogN).



   The asymptotic worst-case bound for the BF algorithm is O(H  .  M),

   where M is again the number of edges in the graph, and H, which is

   the maximum number of iterations of the algorithm, is an upper-bound

   on the number of hops in a shortest path.  Although, theoretically,

   H can be as large as N -  1, in practice it is usually considerably

   smaller than N.  Moreover, in some network scenarios an upper-bound

   U of small size (i.e., U   <<  N) is imposed on the allowed number

   of hops; for example, it might be decided to exclude paths that

   have more than, say, 16 hops, as part of a call admission scheme.

   In such cases, the number of iterations of the BF algorithm can be

   limited to U, thus bounding the number of operations to O(U  .  M),

   i.e., effectively to O(M).  As a consequence, as noted in [BG92],

   in practical networking scenarios, the BF algorithm can offer an
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   efficient solution to the shortest path problem, one that often

   outperforms the Dijkstra algorithm. (8)

   In the context of QoS path selection, the potential benefits of the

   BF algorithm are even stronger.  As mentioned before, efficient

   selection of a suitable path for flows with QoS requirements cannot

   usually be handled using a single-objective optimization criterion.

   While multi-objective path selection is known to be an intractable

   problem [GJ79], the BF algorithm allows us to handle a second

   objective, namely the hop-count, which is reflective of network

   resources, at no additional cost in terms of complexity.  The

   Dijkstra algorithm requires some modifications (or approximations,

   e.g., bandwidth quantization) in order to be able to deal with hop

   count as a second objective.

   Therefore, in the context of a QoS path selection algorithm,

   where one objective is some QoS-oriented metric, such as available

   bandwidth, whereas the second is a hop-count metric, a BF-based

   algorithm provides an efficient scheme for pre-computing paths,

   i.e., one with a worst case asymptotic complexity of O(H    .   M).

   Alternatively, if QoS paths are pre-computed using a Dijkstra

   algorithm with Q quantized bandwidth values, the corresponding worst

   case asymptotic complexity is O(Q   .    (M logN)).  Both approaches

   provide solutions of comparable orders of complexity, whose exact

   merits depend on the respective values of H, Q and N.  If on-demand

   computations of QoS paths are practical, then a standard Dijkstra

   algorithm provides a solution of complexity O(MlogN).

E. Extension:  Handling Propagation Delays

   In general, the framework proposed for path selection does not allow

   us to explicitly account for link propagation delays.  As mentioned,

   this aspect is dealt with through a policy mechanism, which for

   delay-sensitive connections deletes from the topology database links



   with high propagation delays, such as satellite links.  However, it

   is worth pointing out that a simple extension to the proposed path

   selection algorithm allows us to directly account for delay in a

----------------------------

8. For example, in the experimental comparison reported in [CGR94], the

   BF algorithm outperformed the Dijkstra algorithm in about one third

   of the studied types of topology, and in several of the other

   topologies it outperformed the Dijkstra algorithm for networks of up

   to about 16,000 nodes.  It should be noted that in those experiments

   no upper bound on the number of hops in a shortest path was set.
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   number of special cases.  We proceed to describe next this extension

   and the case where it applies.

   A common way to map delay guarantees into bandwidth guarantees

   (e.g., consistent with the schedulers and corresponding delay

   bounds presented in [GGPS96, PG94]) is according to the following

   expression:

                     D(p) =A(h(p))=b +sum(l in p) d(l)               (1)

   where p is the path traversed, D(p) is the guaranteed (upper-bound)

   end to end delay, h(p) is the number of hops, b is the reserved

   bandwidth, d(l) is the (fixed) propagation delay of a link l, and A(h)

   is a parameter that grows with h (a typical value is A(h)= B +h . c,

   where B is the burst size and c is the maximum packet size).

   Since we deal with intra-domain routing, and since links with

   prohibitively high propagation delays are assumed to be filtered out

   by means of policy, it can be assumed that typically there is some

   value d which is a reasonable upper bound on the propagation delays

   d(l) of all links.  Expression (1) then implies that an end to end

   delay requirement D can be translated into a bandwidth requirement

   b(h) by the following expression:

                           b(h) =A(h)=(D -h. d)                      (2)

   where h is the number of hops on the path established for the

   connection.

F. QoS Path Establishment and Management with RSVP



   In this section, we briefly illustrate the use of the QoS path

   selection approach described in this document, for unicast RSVP

   flows.  The objective is to path set up QoS paths for RSVP flows

   and keep them pinned a s long as it is desirable to do so, while

   requiring minimal changes to RSVP. Clearly, some changes are

   needed, particularly to RSVP’s interface to routing and its message

   processing rules.  These will be detailed next.  In addition, the

   impact of this path management approach data path is considered and

   alternative approaches and extensions are discussed.
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F.1. RSVP/Routing interface

   Currently, RSVP acquires routing entries using its asynchronous

   query-response interface to routing [Zap96].  Route query is of the

   form

              Route_Query( [SrcAddress], DestAddress, Notify_flag )

   and Routing responds with OutInterface (or OutInterface_list in case

   of a multicast connection)

   In order for RSVP to interact with a QoS routing algorithm,

   QoS_Route_Query needs to also include (at a minimum) the

   sender_TSpec, so that it is now of the form

              Route_Query( [SrcAddress], DestAddress, TSpec, Notify_flag )

   and again responds with OutInterface (or OutInterface_list in case of

   a multicast connection).

   Another small difference with the current interface is that the

   Notify_flag should always be set to True.  This is because there will

   be no Route_Query to QoS routing in the case of pinned paths.  Hence,

   it is important that a trigger be provided to unpin the path in case

   of failure.  However, note that QoS routing will only generate an

   asynchronous Route_Change callback to RSVP in the case of the failure

   of a local (to the router) link currently used by the QoS path.

F.2. Path Management Rules

   The state of a QoS path as maintained by RSVP consists of a flag

   that is used to indicate whether the path is currently pinned or

   not.  Specifically, a pinned path means that QoS routing need not be

   queried for a new path (next hop) for forwarding a PATH refresh.  The



   rules for pinning and unpinning routes are as follows:

    1. Routes get pinned during processing of PATH messages.

    2. Routes get unpinned when

       (a) corresponding path states are removed (time-out or PATH

           _TEAR),

       (b) some of the parameters received in PATH messages change,

       (c) a local admission control failure error is detected after

           receiving a RESV message,
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       (d) a PATH _ERR with a specific error code is received, or

       (e) failure notification of a local link belonging to the path is

           received.

   Minor changes to RSVP message processing rules are adequate to handle

   pinning and unpinning of paths as needed.  These specific changes are

   described below.

PATH message processing:

   When receiving the first PATH message, RSVP determines that no PATH

   state exists for the flow.  It then queries QoS routing to obtain the

   next hop along the best available path.  This next hop is stored as

   part of the PATH state with its pinned flag set.

   Upon receiving a PATH refresh, RSVP checks for changes in PATH state

   that are of relevance to QoS routing.  In particular, it checks for

   changes in PHOP and the IP TTL value.  If there are no changes and

   the current next hop is indicated as pinned, it will be used to

   forward the next PATH refresh.  If the PATH state has changed or the

   current next hop is marked as unpinned, RSVP queries QoS routing

   again to obtain (and pin) a new next hop that is to be used when

   forwarding the next PATH refresh.  Similarly, at the time when a

   PATH refresh is to be sent, RSVP checks if the current next hop is

   pinned or not.  If it is, it is used to forward the PATH refresh.

   Otherwise, QoS routing is again queried to obtain (and pin) a new

   next hop.

   The unpinning of the path upon detecting changes in either the PHOP

   or the IP TTL value of an incoming PATH message is used to ensure

   that transient loops caused by inconsistent routing information are

   eventually cleared [GKH97].



PATH_TEAR message processing:

   Processing is similar to what is currently done.  PATH and RESV

   states are removed.

RESV message processing:

   The only change needed is for the case when the resource reservation

   attempt fails.  As currently specified, a RESV_ERR message with

   "admission control failure" error code is still sent downstream in

   such instances.  However, some additional processing is needed in
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   order to enable selection of a better path in case one exists.  This

   starts with the unpinning of the current next hop, and then proceeds

   in either one of two ways:  attempt *local* repair of the QoS path or

   not.

   In case local repair is attempted, RSVP queries again its local

   QoS routing table.  If a different next hop is returned, i.e., the

   reservation may now succeed, then local repair is attempted by

   pinning the new hop and sending a PATH message along the new route.

   If the same next hop is returned, then local repair has failed.  In

   this case or when local repair is not attempted, the current next

   hop is then unpinned in the PATH state (but kept).  Furthermore, a

   PATH _ERR message is sent upstream with a new QoS_Path_Failure Error

   Code (the exact code point is tbd) and an associated Error Value

   specifying that the type of error was "Requested QoS unavailable"

   (the specific format of the Error Value field is tbd).  As described

   below, the receipt of a PATH _ERR message with the QoS_Path_Failure

   Error Code triggers unpinning of the next hop information at upstream

   router.  This ensures that QoS routing will be queried at the time of

   the next PATH refresh, so that a better path, if one exists, can be

   identified.

Route_Change notification processing:

   A Route_Change notification is triggered when QoS routing detects

   that a local link currently used by a QoS path failed.  Upon

   receiving such a notification, RSVP immediately unpins the current

   next hop.  As in the case of reservation failure, RSVP can then

   first attempt local repair, i.e., query QoS routing for a new next

   hop.  If a new next hop is returned by QoS routing, RSVP uses it

   to replace the previous next hop, marks it as pinned, and forwards

   a PATH message towards the new next hop.  If QoS routing responds

   that no path to the destination is available or if local repair is

   not attempted, RSVP sends upstream a PATH _ERR message with the



   QoS_Path_Failure Error Code and an Error Value specifying "Link

   failure".

PATH_ERR message processing:

   The only modification is, as mentioned above, to recognize the new

   QoS_Path_failure Error Code and unpin the associated next hop.  This

   forces a fresh QoS route query during the processing of the next PATH

   refresh.
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RESV_ERR message processing:

   There are no changes to RESV_ERR processing.

F.3. Impact of QoS Routing on the Data Path

   The use of QoS routing only affects the choice of a data path and not

   how the actual forwarding of data packet takes place.  Nevertheless,

   there is an important aspect that needs to be noted.  Specifically,

   while PATH messages are immediately forwarded onto the next hop

   returned by QoS routing, the same need not apply to data packets.

   This is because of the potential for transient loops in QoS paths.

   Forwarding PATH messages on a QoS path that may contain loops has

   minimal impact on the routers and is actually useful to detect and

   eliminate loops (more on this below).  However, depending on how fast

   loops can be resolved, forwarding data packets on a QoS path may be

   best deferred until the absence of a loop has been verified.

   As a result, it is proposed that modification of the packet

   classifier in the forwarding loop that will result in data packets

   being sent towards the next hop specified by QoS routing, be deferred

   until the time a RESV message is received.  As discussed below, the

   receipt of a RESV message also implies that loops are not present in

   the QoS path.  Note that the update of classifiers at the time of

   receipt of a RESV message is consistent with when this is done using

   the current default routing.  The main difference is that the actual

   flow of data packets may not start following the QoS path until after

   the classifier has been updated in the first node where the default

   and the QoS paths start differing.

   There are some drawbacks with the above approach, e.g., inability to

   take advantage of partial reservations in some instances, and they

   can be addressed in a number of ways.  One possibility, that may be

   acceptable if transient loops are detected and removed quickly, is



   to actually update classifiers upon receipt of a PATH message (or a

   certain number of PATH messages, when it appears that the QoS path

   is stable and loops are not present).  Another more comprehensive

   alternative is to couple this process with the handling of policy

   information.  Such a coupling is a natural step as the ability for

   users to specify how much of a partial reservation is acceptable

   to them, i.e., does one need to look for another path, is really

   a policy issue.  In order to support such a coupling, policy data

   objects would have to be included in PATH, RESV, RESV_ERR, and

   PATH_ERR messages, in order to enable the local policy control

   module to assess the suitability of a QoS path.  The discussion and

   description of such an approach is the subject of future work.
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   For a detailed discussion of how these QoS path management rules

   within RSVP prevent loops and handle race conditions, the reader is

   referred to [GKH97].

F.4. Alternatives and Extensions

   In the path management approach described here, bulk of the

   responsibility for QoS path management, i.e., pinning and unpinning

   of next hop information, lies with RSVP. This was motivated in part

   by the need to couple path management with the RSVP soft state

   management, and by the close relation to existing RSVP processing

   rules.  However, it is also possible to defer this responsibility to

   routing itself.  The cost of such an approach would be the need for

   QoS routing to replicate some of the RSVP state information, e.g. ,

   store PHOP, NHOP, TSpec, etc. , for each flow, and also by requiring

   that this information be passed across the interface between RSVP and

   routing.

   Another different design approach is to rely on the inclusion of

   source (explicit) route objects, that would be carried in RSVP PATH

   messages as opaque objects and passed to QoS routing at each node.

   Such a design affords some simplification as it avoids the problem

   of loops altogether, but issues related to pinning and unpinning of

   paths (at the source) remain for the cases of reservation and link

   failures.  The discussion of such a design is clearly of interest,

   but it is beyond the scope of this document.
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