
ATNP/WG 2

WP/

June 20, 1997

AERONAUTICAL TELECOMMUNICATION NETWORK PANEL

WORKING GROUP 2 (Internet)

Langen, GERMANY, 23 - 26 June 1997

QOS MANAGEMENT AND ROUTING

Prepared by: James Moulton

Presented by: James Moulton

Summary: The future work program for ATNP/3 includes an item on QoS provisioning
and routing. As a starting point for this work, the latest IETF Internet Draft on QoS
routing is attached.

InternetEngineering TaskForce R.Guerin/S. Kamat/A. Orda

INTERNETDRAFT IBM/IBM/Technion

 T.Przygienda/D. Williams

 Fore/IBM

 25 March 1997

 QoS Routing Mechanismsand OSPFExtensions

 draft-guerin-qos-routing-ospf-01.txt

Status of This Memo

 This document is an Internet-Draft. Internet Drafts are working

 documents of the Internet Engineering Task Force (IETF), its Areas,

 and its Working Groups. Note that other groups may also distribute

 working documents as Internet Drafts.

 Internet Drafts are draft documents valid for a maximum of six

 months, and may be updated, replaced, or obsoleted by other documents

 at any time. It is not appropriate to use Internet Drafts as

 reference material, or to cite them other than as a ‘‘working draft’’

 or ‘‘work in progress.’’

 To learn the current status of any Internet-Draft, please check

 the ‘‘1id-abstracts.txt’’ listing contained in the internet-drafts

 Shadow Directories on ds.internic.net (US East Coast), nic.nordu.net

 (Europe), ftp.isi.edu (US West Coast), or munnari.oz.au (Pacific

 Rim).

Abstract

 This memo describes extensions to the OSPF [Moy94] protocol to

 support QoS routes. The focus of the document is on the algorithms

 used to compute QoS routes and on the necessary modifications to

 OSPF to support this function, e.g., the information needed, its

 format, how it is distributed, and how it is used by the QoS path

 selection process. Aspects related to how QoS routes are established

 and managed are also discussed. The goal of this document is to

 identify a framework and possible approaches to allow deployment of

 QoS routing capabilities with the minimum possible impact to the

 existing routing infrastructure.

Guerin, et al. Expires 30 September 1997 [Page i]

Internet Draft QoS Routing Mechanisms 25 March 1997

 Contents

Status of This Memo i

Abstract i

 1. Introduction 1

 1.1. Overall Framework . 1

 1.2. Simplifying Assumptions 2

 2. Path Selection Information and Algorithms 4

 2.1. Metrics . 4

 2.2. Advertisement of Link State Information 5

 2.3. Path Selection Algorithms 6

 2.3.1. Algorithm for exact pre-computed QoS paths . . . 7

 2.3.2. Algorithm for on-demand computation of QoS paths 11

 2.3.3. Algorithm for approximate pre-computed QoS paths 12

 2.4. Extracting Forwarding Information from Routing Table . . 15

 3. Establishment and Maintenance of QoS Routes 15

 4. OSPF Protocol Enhancements 17

 4.1. QoS -- Optional Capabilities 18

 4.2. Encoding Resources as Extended TOS 19

 4.2.1. Encoding bandwidth resource 20

 4.2.2. Encoding Delay 22

 4.3. Packet Formats . 23

 4.4. Calculating the Inter-area Routes 23

 4.5. Open Issues . 23

 A. Pseudocode for BF Algorithm 24

 B. Zero-Hop Edges 26

 C. Source Routing Support 27

 D. Computational Complexity 29

 E. Extension: Handling Propagation Delays 30

 F. QoS Path Establishment and Management with RSVP 31

 F.1. RSVP/Routing interface 32

 F.2. Path Management Rules 32

 F.3. Impact of QoS Routing on the Data Path 35

Guerin, et al. Expires 30 September 1997 [Page ii]

Internet Draft QoS Routing Mechanisms 25 March 1997

 F.4. Alternatives and Extensions 36

Guerin, et al. Expires 30 September 1997 [Page iii]

Internet Draft QoS Routing Mechanisms 25 March 1997

1. Introduction

 In this document we describe a set of proposed additions to the

 OSPF routing protocol (the additions are built on top of OSPF V2)

 to support Quality-of-Service (QoS) routing in IP. In particular,

 we discuss the metrics required to support QoS, the associated link

 advertisement mechanisms, the path selection algorithm, as well

 as aspects of route establishment (pinning and unpinning). Our

 goals are to define an approach which while achieving the goals of

 improving performance for QoS flows (likelihood to be routed on a

 path capable of providing the requested QoS), does so with the least

 possible impact on the existing OSPF protocol. Given the inherent

 complexity of QoS routing, achieving this goal obviously implies

 trading-off ‘‘optimality’’ for ‘‘simplicity’’, but we believe this

 to be required in order to facilitate deployment of QoS routing

 capabilities.

1.1. Overall Framework

 We consider a network (1) that supports both best-effort packets and

 packets with QoS guarantees. The way in which the network resources

 are split between the two classes is irrelevant to our proposal,

 except for the assumption that each QoS capable router in the network

 is able to dedicate some of its resources to satisfy the requirements

 of QoS packets. QoS capable routers are also assumed to be able to

 identify and advertise the amount of their resources that remain

 available for additional QoS flows. In addition, we limit ourselves

 to the case where all the routers involved support the QoS extensions

 described in this document, i.e., we do not consider the problem of

 establishing a route in an heterogeneous environment with routers

 that are QoS-capable and others that are not. Furthermore, in this

 document we focus on the case of unicast flows, although many of the

 additions we define are applicable to multicast flows as well.

 We assume that a flow with QoS requirements will specify them

 in some fashion that is accessible to the routing protocol. For

 example, this could correspond to the arrival of an RSVP [RZB+96]

 PATH message, whose TSpec is passed to routing together with the

 destination address. After processing such a request, the routing

 protocol returns a path that it deems the most suitable given the

 flow’s requirements. Depending on the scope of the path selection

1. In this document we commit the abuse of notation of calling a

 ‘‘network’’ the interconnection of routers and networks through which

 we attempt to compute a QoS path.

Guerin, et al. Expires 30 September 1997 [Page 1]

Internet Draft QoS Routing Mechanisms 25 March 1997

 process, this returned path could range from simply identifying the

 best next hop, i.e., a traditional hop-by-hop routing, to specifying

 all intermediate nodes to the destination, i.e., a source route.

 Note that this decision impacts the operation of the path selection

 algorithm as it translates into different requirements in order to

 construct and return the appropriate path information. Note also

 that extension to multicast paths will impact differently a source

 routed and a hop-by-hop approach.

 In this document, we will focus on hop-by-hop routing. The

 algorithms solutions for path computation and establishment can be

 easily modified for source routing and such extensions are discussed

 in appendix C.

 Once a suitable path has been identified, the flow is assigned to

 it (pinning) and remains assigned to it until it either releases

 the path (unpinning) or deems that it has become unsuitable, e.g.,

 because of link failure or unavailability of the necessary resources.

 Note that resource reservation and/or accounting should help limit

 the frequency of the latter.

 In this document, we focus on the aspect of selecting an appropriate

 path based on information on link metrics and flow requirements.

 There are obviously many other aspects that need to be specified in

 order to define a complete proposal for QoS routing. Issues such as

 specifying the frequency of updates and the granularity of advertised

 changes to metrics, support for heterogenous areas with a mix of QoS

 capable and incapable routers, etc., require further study. The

 discussion of a complete solution to these problems is, however,

 deferred to subsequent versions of this draft.

1.2. Simplifying Assumptions

 In order to achieve our goal of a minimum impact to the existing

 protocol, we impose certain restrictions on the range of requirements

 the QoS path selection algorithm needs to deal with directly.

 Specifically, a policy scheme is used to a priori prune from

 the network, those portions that would be unsuitable given the

 requirements of the flow. This limits the ‘‘optimization’’ performed

 by the path selection to a containable set of parameters, which helps

 keep complexity at an acceptable level. Specifically, the path

 selection algorithm will focus on selecting a path that is capable of

 satisfying the bandwidth requirement of the flow, while at the same

 time trying to minimize the amount of network resources that need to

 be allocated to support the flow, i.e., minimize the number of hops

 used.

Guerin, et al. Expires 30 September 1997 [Page 2]

Internet Draft QoS Routing Mechanisms 25 March 1997

 This focus on bandwidth is adequate in most instances, but does not

 fully capture the complete range of potential QoS requirements. For

 example, a delay-sensitive flow of an interactive application could

 be put on a path using a satellite link, if that link provided a

 direct path and had plenty of unused bandwidth. This would clearly

 be an undesirable choice. Our approach to preventing such poor

 choices, is to assign delay-sensitive flows to a policy that would

 eliminate from the network all links with high propagation delay,

 e.g., satellite links, before invoking the path selection algorithm.

 In general, each existing policy would present to the path selection

 algorithm its correspondingly pruned network topology, and the same

 algorithm would then be used to generate an appropriate path.

 Another important aspect in minimizing the impact of QoS routing

 is to develop a solution that has the smallest possible computing

 overhead. Additional computations are unavoidable, but it is

 desirable to keep the total cost of QoS routing at a level comparable

 to that of traditional routing algorithms. In this document, we

 describe several alternatives to the path selection algorithm,

 that represent different trade-offs between simplicity, accuracy,

 and computational cost. In particular, we specify algorithms

 that generate exact solutions based either on pre-computations or

 on-demand computations. We also describe algorithms that allow

 pre-computations at the cost of some loss in accuracy, but with

 possibly lower complexity or greater ease of implementation. It

 should be mentioned, that while several alternative algorithms are

 described in this document, the same algorithm needs to be used

 consistently within a given routing domain. This requirement can be

 relaxed when a source routed approach is used as the responsibility

 of selecting a QoS path lies with a single entity, the origin of

 the request, which ensures consistency. Hence, it may then be

 possible for each router to use a different path selection algorithm.

 However, in general, the use of a common path selection algorithm is

 recommended, if not necessary, for proper operation.

 The rest of this document is structured as follows. In Section 2,

 we describe the path computation process and the information it

 relies on. In Section 3, we briefly review some issues associated

 with path management and their implications. In Section 4, we go

 over the extensions to OSPF that are needed in order to support the

 path selection process of Section 2. Finally, several appendices

 provide details on the different path selection algorithms described

 in Section 2, elaborate on path management mechanisms, and outline

 several additional work items.

Guerin, et al. Expires 30 September 1997 [Page 3]

Internet Draft QoS Routing Mechanisms 25 March 1997

2. Path Selection Information and Algorithms

 This section describes several path selection algorithms that

 can be used to generate QoS capable paths based on different

 trade-offs between accuracy, computational complexity, and ease of

 implementation. In addition, the section also covers aspects related

 to the type of information, i.e., metrics, on which the algorithms

 operate, and how that information is made available, i.e., link state

 advertisements. The discussion on these topics is of a generic

 nature, and OSPF specific details are provided in Section 4.

2.1. Metrics

 As stated earlier, the process of selecting a path that can satisfy

 the QoS requirements of a new flow relies on both the knowledge of

 the flow’s requirements and characteristics, and information about

 the availability of resources in the network. In addition, for

 purposes of efficiency, it is also important for the algorithm to

 account for the amount of resources the network has to allocate in

 order to support a new flow. In general, the network prefers to

 select the ‘‘cheapest’’ path among all paths suitable for a new flow.

 Furthermore, the network may also decide not to accept a new flow

 for which it identified a feasible path, if it deems the cost of the

 path to be too high. Accounting for these aspects involves several

 metrics on which the path selection process is based. They include:

 - Link available bandwidth: As mentioned earlier, we assume that

 most QoS requirements are derivable from a rate-related quantity,

 termed ‘‘bandwidth’’. We further assume that associated with

 each link is a maximal bandwidth value, e.g., the link physical

 bandwidth or some fraction thereof that has been set aside for

 QoS flows. Since for a link to be capable of accepting a new

 flow with given bandwidth requirements, at least that much

 bandwidth must be still available on the link, the relevant link

 metric is, therefore, the (current) amount of available (i.e.,

 unallocated) bandwidth.

 - Hop-count: This quantity is used as a measure of the path cost

 to the network. A path with a smaller number of hops (that can

 support a requested connection) is typically preferable, since

 it consumes fewer network resources. While as a general rule

 each edge in the graph on which the path is computed should be

 counted as one hop, some edges, specifically those that connect

 a transit network to a router, should not be taken into account.

 (See Appendix B for a detailed explanation.)

Guerin, et al. Expires 30 September 1997 [Page 4]

Internet Draft QoS Routing Mechanisms 25 March 1997

 - Policy: As previously discussed, policies are used to identify

 the set of links in the network that need to be considered when

 running the path selection algorithm. In particular, policies

 are used to prune from the network links that are incompatible,

 performance or characteristics wise, with the requirements of

 a flow. A specific policy example of special importance, is

 the elimination of high latency links when considering path

 selection for delay sensitive flows. The use of policies to

 handle specific requirements allows considerable simplification

 in the optimization task to be performed by the path selection

 algorithm.

2.2. Advertisement of Link State Information

 It is assumed that each router maintains an updated database of the

 network topology, including the current state (available bandwidth)

 of each link. As described in Section 4, the distribution of link

 state (metrics) information is based on extending OSPF mechanisms.

 However, in addition to how link state information is distributed,

 another important aspect is when such distribution is to take place.

 Ideally, one would want routers to have the most current view

 of the bandwidth available on all links in the network, so that

 they can make the most accurate decision on which path to select.

 Unfortunately, this then calls for very frequent updates, e.g.,

 close to every time the available bandwidth of a link changes, which

 is neither scalable nor practical. Alternatively, one may opt for

 a simple mechanism based on periodic updates, where the period of

 updates is determined based on a tolerable corresponding load on the

 network and the routers. The main disadvantage of such an approach

 is that major changes in the bandwidth available on a link could

 remain unknown for a full period and, therefore, result in many

 incorrect routing decisions.

 As a result, we propose to use a simple hybrid update mechanism, that

 attempts to reconcile accuracy of link state information with the

 need for the smallest possible overhead. Periodic updates are used,

 say every T seconds, to notify nodes of any change of more than ffi

 in the available bandwidth of a link, and event-driven updates are

 generated immediately whenever the change in available link bandwidth

 since the last update exceeds . The values for T, ffi, and depend

 on network size, link speed, processing capabilities, and overall

 traffic patterns, but typical values would be: T 30sec, ffi 10%,

 40%. Regardless of bandwidth changes, as in the current OSPF

 specifications, we also impose a minimum interval between consecutive

 updates, e.g., we do not allow any particular LSA to get updated more

Guerin, et al. Expires 30 September 1997 [Page 5]

Internet Draft QoS Routing Mechanisms 25 March 1997

 than once every MinLSInterval seconds, e.g., 5, in order to prevent

 the possibility of overload.

2.3. Path Selection Algorithms

 There are several aspects to the path selection algorithms. The

 main ones include the optimization criteria it relies on, the exact

 topology on which it is run, and when it is invoked.

 As mentioned before, invocation of the path selection algorithm can

 be either per flow, or when warranted by changes in link states when

 the algorithm used allows precomputation of paths (more on this

 below).

 The topology on which the algorithm is run is, as with the standard

 OSPF path selection, a directed graph where vertices (2) consist of

 routers and networks (transit vertices) as well as stub networks

 (non-transit vertices). When computing a path, stub networks are

 added as a post-processing step, which is essentially similar to

 what is done with the current OSPF routing protocol. In addition,

 for each policy supported on a router, the topology used by the

 path selection algorithm is correspondingly pruned to reflect the

 constraints imposed by the policy, and in some instances the flow

 requirements.

 The optimization criteria used by the path selection are reflected

 in the costs associated with each interface in the topology and how

 those costs are accounted for in the algorithm itself. As mentioned

 before, the cost of a path is a function of both its hop count and

 the amount of available bandwidth. As a result, each interface

 has associated with it a metric, that corresponds to the amount of

 bandwidth which remains available on this interface. This metric

 is combined with hop count information to provide a cost value,

 in a manner that depends on the exact form of the path selection

 algorithm. It will, therefore, be detailed in the corresponding

 sections below, but all the different alternatives that are described

 share a common goal. That is, they all aim at picking a path with

 the minimum possible number of hops among those that can support

 the requested bandwidth. When several such paths are available,

 the preference is for the path whose available bandwidth (i.e., the

 smallest value on any of the links in the path) is maximal. The

 rationale for the above rule is the following: we focus on feasible

 paths (as accounted by the available bandwidth metric) that consume

2. In this document, we use the terms node and vertex interchangeably.

Guerin, et al. Expires 30 September 1997 [Page 6]

Internet Draft QoS Routing Mechanisms 25 March 1997

 a minimal amount of network resources (as accounted by the hop-count

 metric); and the rule for selecting among these paths aims at

 balancing load as well as maximizing the likelihood that the required

 bandwidth will indeed be available.

 It should be noted that standard routing algorithms are typically

 single objective optimizations, i.e., they may minimize the

 hop-count, or maximize the path bandwidth, but not both. Double

 objective path optimization is a more complex task, and, in

 general, it is an intractable problem [GJ79]. Nevertheless, as

 we will see, because of the specific nature of the two objectives

 being optimized (bandwidth and hop count), the complexity of our

 proposed algorithm(s) is competitive with even that of standard

 single-objective algorithms.

2.3.1. Algorithm for exact pre-computed QoS paths

 In this section, we describe a path selection algorithm, that for a

 given network topology and link metrics (available bandwidth) allows

 us to pre-compute all possible QoS paths, and also has a reasonably

 low computational complexity. Specifically, the algorithm allows

 us to pre-compute for any destination a minimum hop count path with

 maximum bandwidth, and has a computational complexity comparable to

 that of a standard shortest path algorithm (3).

 The path selection algorithm is based on a Bellman-Ford (BF)

 shortest path algorithm, which is adapted to compute paths of maximum

 available bandwidth for all hop counts. It is a property of the BF

 algorithm that, at its h-th iteration, it identifies the optimal (in

 our context: maximal bandwidth) path between the source and each

 destination, among paths of at most h hops. In other words, the

 cost of a path is a function of its available bandwidth, i.e., the

 smallest available bandwidth on all links of the path, and finding

 a minimum cost path amounts to finding a maximum bandwidth path.

 However, we also take advantage of the fact that the BF algorithm

 progresses by increasing hop count, to essentially get for free the

 hop count of a path as a second optimization criteria.

 Specifically, at the kth (hop count) iteration of the algorithm,

 the maximum bandwidth available to all destinations on a path of

 no more than k hops is recorded (together with the corresponding

 routing information). After the algorithm terminates, this

3. See Appendix D for a more comprehensive discussion on the aspect of

 computational complexity.

Guerin, et al. Expires 30 September 1997 [Page 7]

Internet Draft QoS Routing Mechanisms 25 March 1997

 information enables us to identify for all destinations and bandwidth

 requirements, the path with the smallest possible number of hops and

 sufficient bandwidth to accommodate the new request. Furthermore,

 this path is also the one with the maximal available bandwidth among

 all the feasible paths with this minimum number of hops. This is

 because for any hop count, the algorithm always selects the one with

 maximum available bandwidth.

 We now proceed with a more detailed description of the algorithm

 and the data structure used to record routing information, i.e.,

 the QoS routing table that gets built as the algorithm progresses

 (pseudo-code for the algorithm can be found in Appendix A). As

 mentioned before, the algorithm operates on a directed graph

 consisting only of transit vertices (routers and networks), with

 stub-networks subsequently added to the path(s) generated by the

 algorithm. The metric associated with each edge in the graph is the

 bandwidth available on the corresponding interface. Let us denote

 by bn;mthe available bandwidth on the edge between vertices n and

 m. The vertex corresponding to the router where the algorithm is

 being run, i.e., the computing router, is denoted as the ‘‘source

 node’’ for the purpose of path selection. The algorithm proceeds to

 pre-compute paths from this source node to all possible destination

 networks and for all possible bandwidth values. At each (hop count)

 iteration, intermediate results are recorded in a QoS routing table,

 which has the following structure:

The QoS routing table:

 - a Kx H matrix, where K is the number of destinations (vertices

 in the graph) and H is the maximal allowed (or possible) number

 of hops for a path.

 - The (n;h) entry is built during the hth iteration (hop count

 value) of the algorithm, and consists of two fields:

 * bw: the maximum available bandwidth, on a path of at most h

 hops between the source node (router) and destination node

 n;

 * neighbor: this is the routing information associated with

 the h (or less) hops path to destination node n, whose

 available bandwidth is bw. In the context of hop-by-hop

 path selection (4), the neighbor information is simply the

 identity of the node adjacent to the source node on that

4. Modifications to support source routing are discussed in Appendix C.

Guerin, et al. Expires 30 September 1997 [Page 8]

Internet Draft QoS Routing Mechanisms 25 March 1997

 path. As a rule, the ‘‘neighbor’’ node must be a router and

 not a network (see Appendix B), the only exception being

 the case where the network is the destination node (and the

 selected path is the single edge interconnecting the source

 to it).

 Next, we provide additional details on the operation of the algorithm

 and how the entries in the routing table are being updated as the

 algorithm proceeds. For simplicity, we first describe the simpler

 case where all edges count as ‘‘hops’’, and later explain how

 zero-hop edges (see Appendix B for further details) are handled.

 When the algorithm is invoked, the routing table is first initialized

 with all bw fields set to 0 and neighbor fields cleared. Next, the

 entries in the first column (which corresponds to one-hop paths) of

 the neighbors of the computing router are modified in the following

 way: the bw field is set to the value of the available bandwidth

 on the direct edge from the source. The neighbor field is set to

 the identity of the neighbor of the computing router, i.e., the next

 router on the selected path.

 Afterwards, the algorithm iterates for at most H iterations

 (considering the above initial iteration as the first). H can be

 either the maximum possible hop count of any path, i.e., an implicit

 value, or it can be set explicitly in order to limit path lengths to

 some maximum value (5) to better control worst case complexity.

 At iteration h, we first copy column h - 1 into column h. In

 addition, the algorithm keeps a list of nodes that changed their bw

 value in the previous iteration, i.e., during the h- 1-st iteration.

 The algorithm then looks at each link (n;m) and checks the maximal

 available bandwidth on an h-hop path to node m whose final hop is

 that link. This amounts to taking the minimum between the bw field

 in entry (n;h -1) and the link metric value bn;m kept in the topology

 database. If this value is higher than the present value of the bw

 field in entry (m;h), then a better (larger bw value) path has been

 found for destination m and with h hops. The bw field of entry

 (m;h) is then updated to reflect this new value. In the case of

 hop-by-hop routing, the neighbor field of entry (m;h) is set to the

 same value as in entry (n;h - 1). This records the identity of the

 first hop (next hop from the source) on the best path identified thus

 far for destination m and with h (or less) hops.

5. This maximum value should be larger than the length of the minimum

 hop-count path to any node in the graph.

Guerin, et al. Expires 30 September 1997 [Page 9]

Internet Draft QoS Routing Mechanisms 25 March 1997

 We conclude by outlining how zero-hop edges are handled. At each

 iteration h (starting with the first), whenever an entry (m;h) is

 modified, it is checked whether there are zero-cost edges (m;k)

 emerging from node m, which is the case when m is a transit network

 (see Appendix B). In that case, we attempt to improve the entry of

 node k that corresponds to the h-th hop, i.e., entry (k;h) (rather

 than entry (k;h + 1)), since the edge (m;k) should not count as an

 additional hop. As with the regular operation of the algorithm, this

 amounts to taking the minimum between the bw field in entry (m;h)

 and the link metric value bm;kkept in the topology database. If

 this value is higher than the present value of the bw field in entry

 (k;h), then the bw field of entry (k;h) is updated to this new value.

 In the case of hop-by-hop routing, the neighbor field of entry (k;h)

 is set, as usual, to the same value as in entry (m;h) (which is also

 the value in entry (n;h- 1)).

 Note that while for simplicity of the exposition, the issue of equal

 cost, i.e., same hop count and available bandwidth, is not detailed

 in the above description, it is straightforward to add this support.

 It only requires that the neighbor field be expanded to record the

 list of next (previous) hops, when multiple equal cost paths are

 present.

Addition of Stub Networks

 As was mentioned earlier, the path selection algorithm is run

 on a graph whose vertices consist only of routers and transit

 networks and not stub networks. This is intended to keep the

 computational complexity as low as possible as stub networks can

 be added relatively easily through a post-processing step. This

 second processing step is similar to the one used in the current OSPF

 routing table calculation [Moy94][Section 16, p. 148], with some

 differences to account for the QoS nature of routes.

 Specifically, after the QoS routing table has been constructed, all

 the router vertices are again considered. For each router, stub

 networks whose link appears in the router’s links advertisement will

 be processed to determine QoS routes available to them. The QoS

 routing information for a stub network is similar to that of routers

 and transit networks and consists of an extension to the QoS routing

 table in the form of an additional row. The columns in that new row

 again correspond to paths of different hop counts, and contain both

 bandwidth and next hop information. We also assume that an available

 bandwidth value has been advertised for the stub network. As before,

 how this value is determined is beyond the scope of this document.

 The QoS routes for a stub network S are constructed as follows:

Guerin, et al. Expires 30 September 1997 [Page 10]

Internet Draft QoS Routing Mechanisms 25 March 1997

 Each entry in the row corresponding to stub network S has its bws

 field initialized to zero and its neighbor set to null. When stub

 network S is found in the link advertisement of router V, the value

 bw(S,h) in the hth column of the row corresponding to stub network S

 is updated as follows:

 bw(S,h) = min (bw(S,h) ; min (bw(V,h) , b(V,S))),

 where bw(V,h) is the bandwidth value of the corresponding column

 for the QoS routing table row associated with router V, i.e.,

 the bandwidth available on an h hop path to V, and b(V,S) is the

 advertised available bandwidth on the link from V to S. The above

 expression essentially states that the bandwidth of a h hop paths to

 stub network S is updated using a path through router V, only if the

 minimum of the bandwidth of the h hop path to V and the bandwidth on

 the link between V and S is larger than the current value.

 Update of the neighbor field proceeds similarly whenever the

 bandwidth of a path through V is found to be larger than or equal

 to the current value. If it is larger, then the neighbor field

 of V in the corresponding column replaces the current neighbor

 field of S. If it is equal, then the neighbor field of V in the

 corresponding column is concatenated with the existing field for S,

 i.e., the current set of neighbors for V is added to the current set

 of neighbors for S.

2.3.2. Algorithm for on-demand computation of QoS paths

 In the previous section, we described an algorithm that allows

 pre-computation of QoS routes. However, it may be feasible in

 some instances, e.g., limited number of requests for QoS routes,

 to instead perform such computations on-demand, i.e., upon receipt

 of a request for a QoS route. The benefit of such an approach is

 that depending on how often recomputation of pre-computed routes is

 triggered, on-demand route computation can yield better routes by

 using the most recent link metrics available. Another benefit of

 on-demand path computation is the associated storage saving, i.e.,

 there is no need for a QoS routing table. This is essentially the

 standard trade-off between memory and processing cycles.

 In this section, we briefly describe how a standard Dijkstra

 algorithm can, for a given destination and bandwidth requirement,

 generate a minimum hop path that can accommodate the required

 bandwidth and also has maximum bandwidth. Because the Dijkstra

 algorithm is already used in the current OSPF route computation, only

 differences from the standard algorithm are described. Also, while

Guerin, et al. Expires 30 September 1997 [Page 11]

Internet Draft QoS Routing Mechanisms 25 March 1997

 for simplicity we do not consider here zero-hop edges (see Appendix

 B), the modification required for supporting them is straightforward.

 The algorithm essentially performs a minimum hop path computation,

 on a graph from which all edges, whose available bandwidth is less

 than that requested by the flow triggering the computation, have been

 removed. This can be performed either through a pre-processing step,

 or while running the algorithm by checking the available bandwidth

 value for any edge that is being considered. Another modification

 to a standard Dijkstra based minimum hop count path computation, is

 that the list of equal cost next (previous) hops which is maintained

 as the algorithm proceeds, needs to be sorted according to available

 bandwidth. This is to allow selection of the minimum hop path with

 maximum available bandwidth. Alternatively, the algorithm could also

 be modified to, at each step, only keep among equal hop count paths

 the one with maximum available bandwidth. This would essentially

 amount to considering a cost that is function of both hop count and

 available bandwidth.

2.3.3. Algorithm for approximate pre-computed QoS paths

 This section outlines a Dijkstra-based algorithm that allows

 pre-computation of QoS routes for all destinations and bandwidth

 values. The benefit of using a Dijkstra-based algorithm is a greater

 synergy with existing OSPF implementations. The cost is, however, a

 loss in the ‘‘accuracy’’ of the pre-computed paths, i.e., the paths

 being generated may be of a larger hop count than needed. This

 loss in accuracy comes from the need to rely on quantized bandwidth

 values, that are used when computing a minimum hop count path. In

 other words, the range of possible bandwidth values that can be

 requested by a new flow is mapped into a fixed number of quantized

 values, and minimum hop count paths are generated for each quantized

 value. For example, one could assume that bandwidth values are

 quantized as low, medium, and high, and minimum hop count paths are

 computed for each of these three values. A new flow is then assigned

 to the minimum hop path that can carry the smallest quantized

 value, i.e., low, medium, or high, larger than or equal to what it

 requested.

 Here too, we discuss the elementary case where all edges count as

 ‘‘hops’’, and note that the modification required for supporting

 zero-hop edges is straightforward.

 As with the BF algorithm, the algorithm relies on a routing table

 that gets built as the algorithm progresses. The structure of the

 routing table is as follows:

Guerin, et al. Expires 30 September 1997 [Page 12]

Internet Draft QoS Routing Mechanisms 25 March 1997

The QoS routing table:

 - a K x Q matrix, where K is the number of vertices and Q is the

 number of quantized bandwidth values.

 - The (n;q) entry contains information that identifies the

 minimum hop count path to destination n, that is capable of

 accommodating a bandwidth request of at least bw[q] (the qth

 quantized bandwidth value). It consists of two fields:

 * hops: the minimal number of hops on a path between the

 source node and destination n, that can accommodate a

 request of at least bw[q] units of bandwidth.

 * neighbor: this is the routing information associated with

 the minimum hop count path to destination node n, whose

 available bandwidth is at least bw[q]. With a hop-by-hop

 routing approach, the neighbor information is simply the

 identity of the node adjacent to the source node on that

 path.

 The algorithm operates again on a directed graph where vertices

 correspond to routers and transit networks. The metric associated

 with each edge in the graph is as before the bandwidth available on

 the corresponding interface, where bn;mis the available bandwidth

 on the edge between vertices n and m. The vertex corresponding to

 the router where the algorithm is being run is selected as the source

 node for the purpose of path selection, and the algorithm proceeds to

 compute paths to all other nodes (destinations).

 Starting with the highest quantization index, Q, the algorithm

 considers the indices consecutively, in decreasing order. For each

 index q, the algorithm deletes from the original network topology

 all links (n;m) for which bn;m< bw[q], and then runs on the remaining

 topology a Dijkstra-based minimum hop count algorithm (6) between

 the source node and all other nodes (vertices) in the graph. Note

 that as with the Dijkstra used for on-demand path computation, the

 elimination of links such that bn;m < bw[q] could also be performed

 while running the algorithm.

 After the algorithm terminates, the q-th column in the routing table

 is updated. This amounts to recording in the hops field the hop

6. Note that a Breadth-First-Search (BFS) algorithm

 [CLR90] could also be used. It has a lower complexity, but would not

 allow reuse of existing code in an OSPF implementation.

Guerin, et al. Expires 30 September 1997 [Page 13]

Internet Draft QoS Routing Mechanisms 25 March 1997

 count value of the path that was generated by the algorithm, and by

 updating the neighbor field. As before, the update of the neighbor

 field depends on the scope of the path computation. In the case

 of a hop-by-hop routing decision, the neighbor field is set to the

 identity of the node adjacent to the source node (next hop) on the

 path returned by the algorithm. However, note that in order to

 ensure that the path with the maximal available bandwidth is always

 chosen among all minimum hop paths that can accommodate a given

 quantized bandwidth, a slightly different update mechanism of the

 neighbor field needs to be used in some instances. Specifically,

 when for a given row, i.e., destination node n, the value of the

 hops field in column q is found equal to the value in column q + 1

 (here we assume q < Q), i.e., paths that can accommodate bw[q] and

 bw[q+ 1] have the same hop count, then the algorithm copies the value

 of the neighbor field from entry (n;q+ 1) into that of entry (n;q).

Addition of Stub Networks

 This proceeds in a manner very similar to that of Section 2.3.1,

 except for some minor variations reflecting differences in the

 structure of the QoS routing table. Specifically, the columns of

 the QoS routing table now correspond to quantized bandwidth values,

 and the bw field of a column entry has been replaced by a hops

 field. Hence, the QoS routes for a stub network S are constructed

 as follows:

 Each entry in the row corresponding to stub network S has its hops

 field initialized to zero and its neighbor set to null. When stub

 network S is found in the link advertisement of router V, the value

 hops(S,q) in the qth column of the row corresponding to stub network

 S is updated as follows:

 hops(S,q) = hops(V,q) IF (hops(V,q) <= hops(S,q) AND b(V ,S) >=

 bw[q]),

 where bw[q] is the qth quantized bandwidth value, and b(V,S) is

 the advertised available bandwidth on the link from V to S. The

 above expression essentially states that the hop count of the path

 to stub network S capable of supporting a bandwidth allocation

 of bw[q], is updated using a path through router V, only if the

 corresponding path through V has fewer hops than the current one,

 and the bandwidth on the link between V and S is larger than bw[q].

 Update of the neighbor field proceeds similarly whenever the path

 through router V capable of supporting a bandwidth allocation of

 bw[q], is found to yield a hop count smaller than or equal to the

 current value. If it is smaller, then the neighbor field of V in

 the corresponding column replaces the current neighbor field of S.

Guerin, et al. Expires 30 September 1997 [Page 14]

Internet Draft QoS Routing Mechanisms 25 March 1997

 If it is equal, then the neighbor field of V in the corresponding

 column is concatenated with the existing field for S, i.e., the

 current set of neighbors for V is added to the current set of

 neighbors for S.

2.4. Extracting Forwarding Information from Routing Table

 When the QoS paths are precomputed, the forwarding information for

 a flow with given destination and bandwidth requirement needs to be

 extracted from the routing table. The case of hop-by-hop routing is

 much simpler compared to source routing. This is because, only the

 next hop needs to be returned instead of a complete source route.

 Specifically, assume a new request to destination, say, d, and with

 bandwidth requirements B. The index of the destination vertex

 identifies the row in the QoS routing table that needs to be checked

 to generate a path. How the row is searched to identify a suitable

 path depends on which algorithm was used to construct the QoS routing

 table. If the Bellman-Ford algorithm of Section 2.3.1 is used, the

 search proceeds by increasing index (hop) count until an entry is

 found, say at hop count or column index of h, with a value of the

 bw field which is greater than or larger than B. This entry points

 to the initial information identifying the selected path. If the

 Dijkstra algorithm of Section 2.3.3 is used, the first quantized

 value bBsuch that Bb B is first identified, and the associated

 column then determines the first entry in the QoS routing table that

 identifies the selected path.

 The next hop information is then directly retrieved from the neighbor

 information of the first entry pointed to in the QoS routing table.

 The case of source routing is discussed in Appendix C.

3. Establishment and Maintenance of QoS Routes

 In this section, we briefly review issues related to how QoS paths

 are established and maintained. For both, there are functional and

 protocol aspects that need to be covered.

 The goal of QoS routing is to select paths for flows with QoS

 requirements, in such a manner as to increase the likelihood that the

 network will indeed be capable of satisfying them. The use of QoS

 routing algorithms such as the ones described in this document have a

 number of implications above and beyond what is required when using

 standard routing algorithms.

Guerin, et al. Expires 30 September 1997 [Page 15]

Internet Draft QoS Routing Mechanisms 25 March 1997

 First, a specific mechanism needs to be used to identify flows with

 QoS requirements, so that they can be assigned to the corresponding

 QoS routing algorithm. In this section, we assume that the RSVP

 protocol [RZB+96] is used for that purpose. Specifically, RSVP PATH

 messages serve as the trigger to query QoS routing. Second, because

 of variations in the availability of resources in the network, routes

 between the same source and destination and for the same QoS, may

 often differ depending on when the request is made. However, it is

 important to ensure that such changes are not always reflected on

 existing paths. This is to avoid potential oscillations between

 paths and limit changes to cases where the initial selection turns

 out to be inadequate.

 As a result, some state information needs to be associated with a

 QoS route to determines its current validity, i.e., should the QoS

 routing algorithm be queried to generate a new and potentially better

 route, or does the current one remain adequate. We say that a path

 is ‘‘pinned’’ when its state specifies that QoS routing need not be

 queried anew, while a path is considered ‘‘unpinned’’ otherwise.

 The main issue is then to define how, when, and where route pinning

 and unpinning is to take place. In our context, where the RSVP

 protocol is used as the vehicle to request QoS routes, we also want

 this process to be as synergetic as possible with the existing RSVP

 state management. In particular, our goal is to support pinning and

 unpinning of routes in a manner consistent with RSVP soft states

 while requiring minimal changes to the RSVP processing rules.

 It should be noted that some changes are unavoidable, especially

 to the interface between RSVP and routing. Specifically,

 QoS routing requires, in addition to the current source and

 destination addresses, at a minimum, knowledge of the flow’s traffic

 characteristics (TSpec), and possibly also service types (as per

 the information in the Adspec), PHOP, IP TTL value, etc. In this

 document, we assume that the information provided by RSVP to QoS

 routing includes at least the sender TSpec in addition to the source

 and destination addresses. While such changes seem unavoidable, our

 goal is again to keep them as small as possible and also to avoid any

 change to the existing RSVP message format.

 Specifically, we assume interactions between RSVP and routing that

 are very similar to what is currently defined. During the processing

 of RSVP PATH messages, RSVP queries (QoS) routing to obtain the

 next hop(s) for forwarding the PATH message. The PATH message is

 then forwarded on the interface(s) returned by (QoS) routing. As

 mentioned before, the sender TSpec is part of the information made

 available to routing, and a QoS routing algorithm selects the next

 hop along a path to the destination that is most likely to support

 the flow specified by the sender TSpec. Thus, forwarding the PATH

Guerin, et al. Expires 30 September 1997 [Page 16]

Internet Draft QoS Routing Mechanisms 25 March 1997

 message along this next hop should improve the likelihood of the

 reservation request succeeding during RESV message processing. In

 particular, RESV messages, if any, propagate as before in the reverse

 direction of the PATH messages and attempt to reserve the required

 resources along the path delineated by PATH messages.

 In the context of the above hop-by-hop routing, there are two main

 issues associated with the pinning and unpinning of QoS paths.

 1. Detection of loops that may be caused by inconsistencies in the

 QoS routes returned by QoS routing at different nodes. Such

 inconsistencies are typically transient, but it is important

 that the pinning of a path does not result in the formation of

 permanent loops .

 2. Query of a new QoS route in case of failures. An example of

 such failures is a reservation failure because the RESV message

 arrived substantially later after the QoS route was initially

 selected. Other failures include the usual link failures, and in

 general it is important to allow QoS routing to become aware of

 the failure and select a better route if one is available.

 The QoS path management scheme proposed here addresses the above two

 issues based on the following two design rules:

 1. What is pinned is a ‘‘path’’ taken by a specific RSVP flow and

 not a ‘‘route’’ as computed by the routing algorithm. Hence

 pinning and unpinning are RSVP domain operations, and as a result

 completely independent of the specific QoS routing algorithm

 being used.

 2. Path pinning and unpinning is kept ‘‘soft’’ by tying it to the

 existing RSVP soft state mechanism. In other words, we rely on

 existing RSVP refreshes and time-out mechanisms to detect the

 state changes that trigger pinning and unpinning of paths. In

 addition, such changes are triggered only on the basis of current

 RSVP state information.

 Appendix F specifies how the above two rules translate into the

 conditions and processing rules for pinning and unpinning paths,

 that address the problem of loops while also enabling reactions to

 failures.

4. OSPF Protocol Enhancements

 As stated above, a goal of this work is to limit the additions to the

 existing OSPF V2 protocol, while still providing the required level

Guerin, et al. Expires 30 September 1997 [Page 17]

Internet Draft QoS Routing Mechanisms 25 March 1997

 of support for QoS based routing. To this end, all of the existing

 OSPF mechanisms, data structures, advertisements, and data formats

 remain in place. The purpose of this section of the document is to

 list the enhancements to the OSPF protocol to support QoS as outlined

 in the previous sections.

4.1. QoS -- Optional Capabilities

 The OSPF Options field is present in OSPF Hello packets, Database

 Description packets and all LSAs. The Options field enables OSPF

 routers to support (or not support) optional capabilities, and to

 communicate their capability level to other OSPF routers. Through

 this mechanism, routers of differing capabilities can be mixed with

 an OSPF routing domain.

 This document describes one of the Option bits: the Q-bit (for QoS

 capability). The Q-bit is set in router, network, and summary links

 advertisements, and is used to identify routers and networks that

 support (or do not support) QoS routing as defined in this document.

 When the Q-bit is set in a router or summary links link state

 advertisement, it means that there are QoS fields to process in the

 packet. When the Q-bit is set in a network link state advertisement

 it means that the network described in the advertisement is QoS

 capable.

 | * | Q | DC| EA|N/P| MC| E | T |

 The Q-bit is in its semantics very similar to the T-bit and QoS

 capability can be viewed just as an extension of TOS-capabilities.

 This similarity will be reinforced by the encoding introduced

 further in this section. However, one important difference remains

 between TOS and QOS capabilities. A router that does not have TOS

 capabilities forwards packets along TOS 0 paths. Additionally,

 TOS metrics that are not advertised are assumed to have the same

 cost as TOS 0. In case of QoS resources such as bandwidth, this

 does not make sense and could possibly introduce routing loops

 due to different criteria for which the routes are optimized.

 Therefore, if no route exists through routers all supporting QoS or

 any of those does not provide the necessary metric for the resource

 considered, communication with the requested quality of service is

 not possible. Since each of the router link directions is described

 in an independent LSA, even a uni-directional failure to communicate

Guerin, et al. Expires 30 September 1997 [Page 18]

Internet Draft QoS Routing Mechanisms 25 March 1997

 is possible since the availability of a resource metric in one

 direction does not guarantee its accessibility for the other one.

4.2. Encoding Resources as Extended TOS

 Introduction of QoS should ideally not influence the compatibility

 with existing OSPFv2 routers. To achieve this goal, necessary

 extensions in packet formats must be defined in a way that either

 is understood by OSPFv2 routers, ignored or in the worst case

 ‘‘gracefully’’ misinterpreted. Encoding of QoS metrics in the

 TOS field which fortunately enough is longer in OSPF packets

 than officially defined in [Alm92], allows us to mimic the new

 facility as extended TOS capability. OSPFv2 routers will either

 disregard these definitions or consider those unspecified. Specific

 precautions are taken to prevent careless OSPF implementations

 from influencing traditional TOS routing when misinterpreting the

 extension introduced.

 For QoS resources, 32 combinations are available through the use

 of the fifth bit in TOS fields contained in different LSAs. Since

 [Alm92] defines TOS as being four bits long, this definition never

 conflicts with existing values. Additionally, to prevent naive

 implementations that do not take all bits of the TOS field in OSPF

 packets into considerations, the definitions of the ‘QoS encodings’

 is aligned in their semantics with the TOS encoding. Only bandwidth

 and delay are specified as of today and their values map onto

 ‘maximize throughput’ and ‘minimize delay’ if the uppermost bit is

 not taken into account. Accordingly, link reliability and jitter

 could be defined later if necessary.

 OSPF encoding RFC 1349 TOS values

 0 0000 normal service

 2 0001 minimize monetary cost

 4 0010 maximize reliability

 6 0011

 8 0100 maximize throughput

 10 0101

 12 0110

 14 0111

 16 1000 minimize delay

 18 1001

 20 1010

 22 1011

 24 1100

 26 1101

Guerin, et al. Expires 30 September 1997 [Page 19]

Internet Draft QoS Routing Mechanisms 25 March 1997

 28 1110

 30 1111

 OSPF encoding ‘QoS encoding values’

 32 10000

 34 10001

 36 10010

 38 10011

 40 10100 bandwidth

 42 10101

 44 10110

 46 10111

 48 11000 delay

 50 11001

 52 11010

 54 11011

 56 11100

 58 11101

 60 11110

 62 11111

 Representing TOS and QoS in OSPF.

4.2.1. Encoding bandwidth resource

 Given the fact that the actual metric field in OSPF packets only

 provides 16 bits to encode the value used and that links supporting

 bandwidth ranging into Gbits/s are becoming reality, linear

 representation of the available resource metric is not feasible. The

 solution is exponential encoding using appropriately chosen implicit

 base value and number bits for encoding mantissa and the exponent.

 Detailed considerations leading to the solution described are not

 presented here but can be found in [Prz95].

 Given a base of 8, the 3 most significant bits should be reserved for

 the exponent part and the remaining 13 for the mantissa. This allows

 a simple comparison for two numbers encoded in this form, which is

 often useful during implementation.

 The following table shows bandwidth ranges covered when using

 different exponents and the granularity of possible reservations.

 exponent

Guerin, et al. Expires 30 September 1997 [Page 20]

Internet Draft QoS Routing Mechanisms 25 March 1997

 value x range (2^13-1)*8^x step 8^x

 0 8,191 1

 1 65,528 8

 2 524,224 64

 3 4,193,792 512

 4 33,550,336 4,096

 5 268,402,688 32,768

 6 2,147,221,504 262,144

 7 17,177,772,032 2,097,152

 Ranges of Exponent Values for 13 bits,

 base 8 Encoding, in Bytes/s

 The bandwidth encoding rule may be summarized as:

 1. represent available bandwidth in 16 bit field as a 3 bit exponent

 (with assumed base of 8) followed by a 13 bit mantissa as shown

 below

 0 8 16

 | | |

 |EXP| MANT |

 2. advertise 2’s complement of the above representation.

 Thus, the above encoding advertises a numeric value that is

 216- 1-(exponential encoding of the available bandwidth):

 This has the property of advertising a higher numeric value for lower

 available bandwidth, a notion that is consistent with that of cost.

 Although it may seem slightly pedantic to insist on the property

 that less bandwidth is expressed higher values, it has, besides

 consistency, a robustness aspect in it. A router with a poor OSPF

 implementation could misuse or misunderstand bandwidth metric as

 normal administrative cost provided to it and compute spanning trees

 with a ‘‘normal’’ Dijkstra. The effect of a heavily congested link

 advertising numerically very low cost could be disastrous in such

 a scenario. It would raise the link’s attractiveness for future

 traffic instead of lowering it. Evidence that such considerations

Guerin, et al. Expires 30 September 1997 [Page 21]

Internet Draft QoS Routing Mechanisms 25 March 1997

 are not speculative, but similar scenarios have been encountered, can

 be found in [Tan89].

 Concluding with an example, assume a link with bandwidth of 8 Gbits/s

 = 10243Bytes/s, its encoding would consist of an exponent value of 6

 since 10243=4; 096*86, which would then have a granularity of 86 260

 kBytes/s. The associated binary representation would then be %(110)

 0 1000 0000 0000% or 53,248 (7). The bandwidth cost (advertised

 value) of this link when it is idle, is then the 2’s complement of

 the above binary representation, i.e., %(001) 1 0111 1111 1111% which

 corresponds to a decimal value of (216- 1)- 53;248 = 12;287. Assuming

 now a current reservation level of of 6;400 Mbits/s = 200 * 10242,

 there remains 1;600 Mbits/s of available bandwidth on the link. The

 encoding of this available bandwidth of 1’600 Mbits/s is 6;400 * 85,

 which corresponds to a granularity of 85 30 kBytes/s, and has a

 binary representation of %(101) 1 1001 0000 0000% or decimal value

 of 47,360. The advertised cost of the link with this load level, is

 then %(010) 0 0110 1111 1111%, or (216- 1)- 47;360 =18;175.

 Note that the cost function behaves as it should, i.e., the less

 bandwidth is available on a link, the higher the cost and the less

 attractive the link becomes. Furthermore, the targeted property of

 better granularity for links with less bandwidth available is also

 achieved. It should, however, be pointed out that the numbers given

 in the above examples match exactly the resolution of the proposed

 encoding, which is of course not always the case in practice. This

 leaves open the question of how to encode available bandwidth

 values when they do not exactly match the encoding. The standard

 practice is to round it to the closest number. Because we are

 ultimately interested in the cost value for which it may be better

 to be pessimistic than optimistic, we choose to round costs up and,

 therefore, bandwidth down.

4.2.2. Encoding Delay

 Delay is encoded in microseconds using the same exponential method

 as described for bandwidth except that the base is defined to be 4

 instead of 8. Therefore the maximum delay that can be expressed is

 (213 -1) *47 134 seconds.

7. exponent in parenthesis

Guerin, et al. Expires 30 September 1997 [Page 22]

Internet Draft QoS Routing Mechanisms 25 March 1997

4.3. Packet Formats

 Given the extended TOS notation to account for QoS metrics, no

 changes in packet formats are necessary except for the introduction

 of Q-bit in the options field. Routers not understanding the Q-bit

 should either not consider the QoS metrics distributed or consider

 those as ‘unknown’ TOS.

4.4. Calculating the Inter-area Routes

 This document proposes a very limited use of OSPF areas, that is, it

 is assumed that summary links advertisements exist for all networks

 in the area. This document does not discuss the problem of providing

 support for area address ranges and QoS metric aggregation. This is

 left for further studies.

4.5. Open Issues

 Support for AS External Links, Virtual Links, and incremental updates

 for summary link advertisements are not addressed in this document

 and are left for further study. For Virtual Links that do exist, it

 is assumed for path selection that this links are non-QoS capable

 even if the router advertises QoS capability. Also, as stated

 earlier, this document does not address the issue of non-QoS routers

 within a QoS domain.

Acknowledgments

 We would like to thank the many people who have helped shape various

 aspects of this document and the approaches it describes, either

 through discussions or explicit suggestions. In particular, we would

 like to acknowledge the help and inputs of John Moy, Sanjay Kamat,

 Dilip Kandlur, and Dimitrios Pendarakis.

Guerin, et al. Expires 30 September 1997 [Page 23]

Internet Draft QoS Routing Mechanisms 25 March 1997

 APPENDICES

A. Pseudocode for BF Algorithm

Note: The pseudocode below assumes a hop-by-hop forwarding approach in

 updating the neighbor field. The modifications needed to support

 a source routed approach are straightforward. The pseudocode also

 does not handle equal cost multi-paths for simplicity, but the

 modification needed to add this support are straightforward.

Input:

 V = set of vertices, labeled by integers 1 to N.

 L = set of edges, labeled by ordered pairs (n,m) of vertex labels.

 s = source vertex (at which the algorithm is executed).

 For all edges (n,m) in L:

 * b(n,m) = available bandwidth (according to last received update)

 on interface associated with the edge between vertices n and m.

 * If(n,m) outgoing interface corresponding to edge (n,m) when n is

 a router.

 H = maximum hop-count (at most the graph diameter).

Type:

 tab_entry: record

 bw = integer,

 neighbor = integer 1..N.

Variables:

 TT[1..N, 1..H]: topology table, whose (n,h) entry is a tab_entry record,
such

 that:

 TT[n,h].bw is the maximum available bandwidth (as known

 thus far) on a path of at most h hops between

 vertices s and n,

 TT[n,h].neighbor is the first hop on that path (a neighbor

 of s). It is either a router or the destination n.

 S_prev: list of vertices that changed a bw value in the TT table

 in the previous iteration.

 S_new: list of vertices that changed a bw value (in the TT table etc.\) in
t

he

 current iteration.

The Algorithm:

begin;

 for n:=1 to N do /* initialization */

 begin;

Guerin, et al. Expires 30 September 1997 [Page 24]

Internet Draft QoS Routing Mechanisms 25 March 1997

 TT[n,0].bw := 0;

 TT[n,0].neighbor := null

 TT[n,1].bw := 0;

 TT[n,1].neighbor := null

 end;

 TT[s,0].bw := infinity;

 reset S_prev;

 for all neighbors n of s do

 begin;

 TT[n,1].bw := max(TT[n,1].bw, b[s,n]);

 if (TT[n,1].bw = b[s,n]) then TT[n,1].neighbor := If(s,n);

 /* need to make sure we are picking the maximum */

 /* bandwidth path for routers that can be reached */

 /* through both networks and point-to-point links */

 if ((n is a router) and ({n} not in S_prev))

 then S_prev := S_prev union {n}

 /* only routers are added to S_prev, but we need to */

 /* check they are not already included in S_prev */

 else /* n is a network: */

 /* proceed with network--router edges, without */

 /* counting another hop */

 for all (n,k) in L, k <> s, do

 /* i.e., for all other neighboring routers of n */

 begin;

 TT[k,1].bw := max(min(TT[n,1].bw, b[n,k]), TT[k,1].bw);

 /* In case k could be reached through another path */

 /* (a point-to-point link or another network) with */

 /* more bandwidth, we do not want to update TT[k,1].bw */

 if (min(TT[n,1].bw, b[n,k]) = TT[k,1].bw)

 /* If we have updated TT[k,1].bw by going through */

 /* network n */

 then TT[k,1].neighbor := If(s,n);

 /* neighbor is interface to network n */

 if ({k} not in S_prev) then S_prev := S_prev union {k}

 /* only routers are added to S_prev, but we again need */

 /* to check they are not already included in S_prev */

 end

 end;

 for h:=2 to H do /* consider all possible number of hops */

 begin;

 reset S_new;

 for all vertices m in V do

 begin;

 TT[m,h].bw := TT[m,h-1].bw;

 TT[m,h].neighbor := TT[m,h-1].neighbor

Guerin, et al. Expires 30 September 1997 [Page 25]

Internet Draft QoS Routing Mechanisms 25 March 1997

 end;

 for all vertices n in S_prev do

 /* as shall become evident, S_prev contains only routers */

 begin;

 for all edges (n,m) in L do

 if min(TT[n,h-1].bw, b[n,m]) > TT[m,h].bw then

 begin;

 TT[m,h].bw := min(TT[n,h-1].bw, b[n,m]);

 TT[m,h].neighbor := TT[n,h-1].neighbor;

 if m is a router then S_new := S_new union {m}

 /* only routers are added to S_new */

 else /* m is a network: */

 /* proceed with network--router edges, without counting them as
*/

 /* another hop */

 for all (m,k) in L, k <> n,

 /* i.e., for all other neighboring routers of m */

 if min(TT[m,h].bw, b[m,k]) > TT[k,h].bw then

 begin;

 /* Note: still counting it as the h-th hop, as (m,k) is a */

 /* network--router edge */

 TT[k,h].bw := min(TT[m,h].bw, b[m,k]);

 TT[k,h].neighbor := TT[m,h].neighbor;

 S_new := S_new union {k}

 /* only routers are added to S_new */

 end

 end

 end;

 S_prev := S_new;

 /* the two lists can be handled by a toggle bit */

 if S_prev=null then h=H+1 /* if no changes then exit */

 end;

end.

B. Zero-Hop Edges

 The need to handle zero-hop edges is due to the potential presence

 of multiple access networks, e.g., T/R, E/N, or ATM, to interconnect

 routers. Such entities are also represented by means of a vertex

 in the current OSPF operation. Clearly, in such cases a network

 connecting two routers should be considered as a single hop path

 rather than a two hop path. For example, consider three routers

 A, B, and C connected over an Ethernet network N, which the OSPF

 topology represents as:

 In the above example, although there are directed edges in both

 directions, an edge from the network to any of the three routers

Guerin, et al. Expires 30 September 1997 [Page 26]

Internet Draft QoS Routing Mechanisms 25 March 1997

 A----N----B

 |

 |

 C

 must have zero ‘‘cost’’, so that it is not counted twice. It should

 be noted that when considering such environments in the context

 of QoS routing, it is assumed that some entity is responsible

 for determining the ‘‘available bandwidth’’ on the network. The

 specification of the operation of such an entity is beyond the scope

 of this document.

C. Source Routing Support

 As mentioned before, the scope of the path selection process can

 range from simply returning the next hop on the QoS path selected for

 the flow, to specifying the complete path that was computed, i.e., a

 source route. Obviously, the information being returned by the path

 selection algorithm differs in these two cases, and constructing it

 imposes different requirements on the path computation algorithm and

 the data structures it relies on. While the presentation of the path

 computation algorithms focused on the hop-by-hop routing approach,

 the same algorithms can be applied to generate source routes with

 minor modifications. These modifications and how they facilitate

 constructing source routes are discussed next.

 The general approach to facilitate construction of source routes is

 to update the neighbor field differently from the way it is done

 for hop-by-hop routing as described in Section 2. Recall that in

 the path computation algorithms the neighbor field is updated to

 reflect the identity of the node adjacent to the source node on the

 partial path computed. This facilitates returning the next hop at

 the source for the specific path. In the context of source routing,

 the neighbor information is updated to reflect the identity of the

 previous router on the path.

 With this change, the basic approach used to extract the complete

 list of verti ces on a path from the neighbor information in the

 QoS routing table is to proceed recursively from the destination to

 the origin vertex. The path is extracted by stepping through the

 precomputed QoS routing table from vertex to vertex, and identifying

 at each step the corresponding neighbor (precursor) information.

 Once the source router is reached, the concatenation of all the

 neighbor fields that have been extracted forms the desired source

Guerin, et al. Expires 30 September 1997 [Page 27]

Internet Draft QoS Routing Mechanisms 25 March 1997

 route. This applies to the source-routed versions of both algorithms

 of Sections 2.3.1 and 2.3.3.

 Specifically, assume a new request to destination, say, d, and with

 bandwidth requirements B. The index of the destination vertex

 identifies the row in the QoS routing table that needs to be checked

 to generate a path. How the row is searched to identify a suitable

 path depends on which algorithm was used to construct the QoS routing

 table. If the Bellman-Ford algorithm of Section 2.3.1 is used, the

 search proceeds by increasing index (hop) count until an entry is

 found, say at hop count or column index of h, with a value of the

 bw field which is greater than or larger than B. This entry points

 to the initial information identifying the selected path. If the

 Dijkstra algorithm of Section 2.3.3 is used, the first quantized

 value bBsuch that Bb B is first identified, and the associated

 column then determines the first entry in the QoS routing table that

 identifies the selected path.

 Once this first entry has been identified, reconstruction of the

 complete list of vertices on the path proceeds similarly, whether

 the table was built using the algorithm of Sections 2.3.1 or 2.3.3.

 Specifically, in both cases, the neighbor field in each entry points

 to the previous node on the path from the source node and with the

 same bandwidth capabilities as those associated with the current

 entry. The complete path is, therefore, reconstructed by following

 the pointers provided by the neighbor field of successive entries.

 In the case of the Bellman-Ford algorithm of Section 2.3.1, this

 means moving backwards in the table from column to column, using at

 each step the row index pointed to by the neighbor field of the entry

 in the previous column. Each time, the corresponding vertex index

 specified in the neighbor field is pre-pended to the list of vertices

 constructed so far. Since we start at column h, the process ends

 when first column is reached, i.e., after h steps, at which point

 the list of vertices making up the path has been reconstructed.

 In the case of the Dijkstra algorithm of Section 2.3.3, the

 backtracking process is similar although slightly different because

 of the different relation between paths and columns in the routing

 table, i.e., a column now corresponds to a quantized bandwidth value

 instead of a hop count. The backtracking now proceeds along the

 column corresponding to the quantized bandwidth value needed to

 satisfy the bandwidth requirements of the flow. At each step, the

 vertex index specified in the neighbor field is pre-pended to the

 list of vertices constructed so far, and is used to identify the next

 row index to move to. The process ends when an entry is reached

 whose neighbor field specifies the origin vertex of the flow. Note

 that since there are as many rows in the table as there are vertices

Guerin, et al. Expires 30 September 1997 [Page 28]

Internet Draft QoS Routing Mechanisms 25 March 1997

 in the graph, i.e., N, it could take up to N steps before the

 process terminates.

 Note that the identification of the first entry in the routing table

 is identical to what was described for the hop-by-hop routing case.

 However, as described in this section, the update of the neighbor

 fields while constructing the QoS routing tables, is being performed

 differently in the source and hop-by-hop routing cases. Clearly, two

 different neighbor fields can be kept in each entry and updates to

 both could certainly be performed jointly, if support for both source

 routing and hop-by-hop routing is needed.

D. Computational Complexity

 One generic aspect of the algorithmic complexity of computing

 QoS paths is the efficiency of the shortest path algorithm used.

 Specifically, in this document, we have described approaches based on

 both Bellman-Ford and Dijkstra shortest paths algorithms. Dijkstra’s

 algorithm has traditionally been considered more efficient for

 standard shortest path computations because of its lower worst case

 complexity. However, the answer is not as simple as may appear, and

 in this section we briefly review a number of considerations, in

 particular in the context of multi-criteria QoS paths, which indicate

 that a BF approach may often provide a lower complexity solution.

 The asymptotic worst-case complexity of the Dijkstra algorithm is

 O(NlogN + M), where N is the number of vertices in the graph,

 and M the number of edges. However, this bound is obtained

 under the assumption of a Fibonnaci heap implementation of the

 Dijkstra algorithm, which is impractical due to the large constants

 involved [CLR90]. In practice, the Dijkstra algorithm is typically

 implemented using binary heaps, for which the asymptotic worst-case

 bound is O(MlogN).

 The asymptotic worst-case bound for the BF algorithm is O(H . M),

 where M is again the number of edges in the graph, and H, which is

 the maximum number of iterations of the algorithm, is an upper-bound

 on the number of hops in a shortest path. Although, theoretically,

 H can be as large as N - 1, in practice it is usually considerably

 smaller than N. Moreover, in some network scenarios an upper-bound

 U of small size (i.e., U << N) is imposed on the allowed number

 of hops; for example, it might be decided to exclude paths that

 have more than, say, 16 hops, as part of a call admission scheme.

 In such cases, the number of iterations of the BF algorithm can be

 limited to U, thus bounding the number of operations to O(U . M),

 i.e., effectively to O(M). As a consequence, as noted in [BG92],

 in practical networking scenarios, the BF algorithm can offer an

Guerin, et al. Expires 30 September 1997 [Page 29]

Internet Draft QoS Routing Mechanisms 25 March 1997

 efficient solution to the shortest path problem, one that often

 outperforms the Dijkstra algorithm. (8)

 In the context of QoS path selection, the potential benefits of the

 BF algorithm are even stronger. As mentioned before, efficient

 selection of a suitable path for flows with QoS requirements cannot

 usually be handled using a single-objective optimization criterion.

 While multi-objective path selection is known to be an intractable

 problem [GJ79], the BF algorithm allows us to handle a second

 objective, namely the hop-count, which is reflective of network

 resources, at no additional cost in terms of complexity. The

 Dijkstra algorithm requires some modifications (or approximations,

 e.g., bandwidth quantization) in order to be able to deal with hop

 count as a second objective.

 Therefore, in the context of a QoS path selection algorithm,

 where one objective is some QoS-oriented metric, such as available

 bandwidth, whereas the second is a hop-count metric, a BF-based

 algorithm provides an efficient scheme for pre-computing paths,

 i.e., one with a worst case asymptotic complexity of O(H . M).

 Alternatively, if QoS paths are pre-computed using a Dijkstra

 algorithm with Q quantized bandwidth values, the corresponding worst

 case asymptotic complexity is O(Q . (M logN)). Both approaches

 provide solutions of comparable orders of complexity, whose exact

 merits depend on the respective values of H, Q and N. If on-demand

 computations of QoS paths are practical, then a standard Dijkstra

 algorithm provides a solution of complexity O(MlogN).

E. Extension: Handling Propagation Delays

 In general, the framework proposed for path selection does not allow

 us to explicitly account for link propagation delays. As mentioned,

 this aspect is dealt with through a policy mechanism, which for

 delay-sensitive connections deletes from the topology database links

 with high propagation delays, such as satellite links. However, it

 is worth pointing out that a simple extension to the proposed path

 selection algorithm allows us to directly account for delay in a

8. For example, in the experimental comparison reported in [CGR94], the

 BF algorithm outperformed the Dijkstra algorithm in about one third

 of the studied types of topology, and in several of the other

 topologies it outperformed the Dijkstra algorithm for networks of up

 to about 16,000 nodes. It should be noted that in those experiments

 no upper bound on the number of hops in a shortest path was set.

Guerin, et al. Expires 30 September 1997 [Page 30]

Internet Draft QoS Routing Mechanisms 25 March 1997

 number of special cases. We proceed to describe next this extension

 and the case where it applies.

 A common way to map delay guarantees into bandwidth guarantees

 (e.g., consistent with the schedulers and corresponding delay

 bounds presented in [GGPS96, PG94]) is according to the following

 expression:

 D(p) =A(h(p))=b +sum(l in p) d(l) (1)

 where p is the path traversed, D(p) is the guaranteed (upper-bound)

 end to end delay, h(p) is the number of hops, b is the reserved

 bandwidth, d(l) is the (fixed) propagation delay of a link l, and A(h)

 is a parameter that grows with h (a typical value is A(h)= B +h . c,

 where B is the burst size and c is the maximum packet size).

 Since we deal with intra-domain routing, and since links with

 prohibitively high propagation delays are assumed to be filtered out

 by means of policy, it can be assumed that typically there is some

 value d which is a reasonable upper bound on the propagation delays

 d(l) of all links. Expression (1) then implies that an end to end

 delay requirement D can be translated into a bandwidth requirement

 b(h) by the following expression:

 b(h) =A(h)=(D -h. d) (2)

 where h is the number of hops on the path established for the

 connection.

F. QoS Path Establishment and Management with RSVP

 In this section, we briefly illustrate the use of the QoS path

 selection approach described in this document, for unicast RSVP

 flows. The objective is to path set up QoS paths for RSVP flows

 and keep them pinned a s long as it is desirable to do so, while

 requiring minimal changes to RSVP. Clearly, some changes are

 needed, particularly to RSVP’s interface to routing and its message

 processing rules. These will be detailed next. In addition, the

 impact of this path management approach data path is considered and

 alternative approaches and extensions are discussed.

Guerin, et al. Expires 30 September 1997 [Page 31]

Internet Draft QoS Routing Mechanisms 25 March 1997

F.1. RSVP/Routing interface

 Currently, RSVP acquires routing entries using its asynchronous

 query-response interface to routing [Zap96]. Route query is of the

 form

 Route_Query([SrcAddress], DestAddress, Notify_flag)

 and Routing responds with OutInterface (or OutInterface_list in case

 of a multicast connection)

 In order for RSVP to interact with a QoS routing algorithm,

 QoS_Route_Query needs to also include (at a minimum) the

 sender_TSpec, so that it is now of the form

 Route_Query([SrcAddress], DestAddress, TSpec, Notify_flag)

 and again responds with OutInterface (or OutInterface_list in case of

 a multicast connection).

 Another small difference with the current interface is that the

 Notify_flag should always be set to True. This is because there will

 be no Route_Query to QoS routing in the case of pinned paths. Hence,

 it is important that a trigger be provided to unpin the path in case

 of failure. However, note that QoS routing will only generate an

 asynchronous Route_Change callback to RSVP in the case of the failure

 of a local (to the router) link currently used by the QoS path.

F.2. Path Management Rules

 The state of a QoS path as maintained by RSVP consists of a flag

 that is used to indicate whether the path is currently pinned or

 not. Specifically, a pinned path means that QoS routing need not be

 queried for a new path (next hop) for forwarding a PATH refresh. The

 rules for pinning and unpinning routes are as follows:

 1. Routes get pinned during processing of PATH messages.

 2. Routes get unpinned when

 (a) corresponding path states are removed (time-out or PATH

 _TEAR),

 (b) some of the parameters received in PATH messages change,

 (c) a local admission control failure error is detected after

 receiving a RESV message,

Guerin, et al. Expires 30 September 1997 [Page 32]

Internet Draft QoS Routing Mechanisms 25 March 1997

 (d) a PATH _ERR with a specific error code is received, or

 (e) failure notification of a local link belonging to the path is

 received.

 Minor changes to RSVP message processing rules are adequate to handle

 pinning and unpinning of paths as needed. These specific changes are

 described below.

PATH message processing:

 When receiving the first PATH message, RSVP determines that no PATH

 state exists for the flow. It then queries QoS routing to obtain the

 next hop along the best available path. This next hop is stored as

 part of the PATH state with its pinned flag set.

 Upon receiving a PATH refresh, RSVP checks for changes in PATH state

 that are of relevance to QoS routing. In particular, it checks for

 changes in PHOP and the IP TTL value. If there are no changes and

 the current next hop is indicated as pinned, it will be used to

 forward the next PATH refresh. If the PATH state has changed or the

 current next hop is marked as unpinned, RSVP queries QoS routing

 again to obtain (and pin) a new next hop that is to be used when

 forwarding the next PATH refresh. Similarly, at the time when a

 PATH refresh is to be sent, RSVP checks if the current next hop is

 pinned or not. If it is, it is used to forward the PATH refresh.

 Otherwise, QoS routing is again queried to obtain (and pin) a new

 next hop.

 The unpinning of the path upon detecting changes in either the PHOP

 or the IP TTL value of an incoming PATH message is used to ensure

 that transient loops caused by inconsistent routing information are

 eventually cleared [GKH97].

PATH_TEAR message processing:

 Processing is similar to what is currently done. PATH and RESV

 states are removed.

RESV message processing:

 The only change needed is for the case when the resource reservation

 attempt fails. As currently specified, a RESV_ERR message with

 "admission control failure" error code is still sent downstream in

 such instances. However, some additional processing is needed in

Guerin, et al. Expires 30 September 1997 [Page 33]

Internet Draft QoS Routing Mechanisms 25 March 1997

 order to enable selection of a better path in case one exists. This

 starts with the unpinning of the current next hop, and then proceeds

 in either one of two ways: attempt *local* repair of the QoS path or

 not.

 In case local repair is attempted, RSVP queries again its local

 QoS routing table. If a different next hop is returned, i.e., the

 reservation may now succeed, then local repair is attempted by

 pinning the new hop and sending a PATH message along the new route.

 If the same next hop is returned, then local repair has failed. In

 this case or when local repair is not attempted, the current next

 hop is then unpinned in the PATH state (but kept). Furthermore, a

 PATH _ERR message is sent upstream with a new QoS_Path_Failure Error

 Code (the exact code point is tbd) and an associated Error Value

 specifying that the type of error was "Requested QoS unavailable"

 (the specific format of the Error Value field is tbd). As described

 below, the receipt of a PATH _ERR message with the QoS_Path_Failure

 Error Code triggers unpinning of the next hop information at upstream

 router. This ensures that QoS routing will be queried at the time of

 the next PATH refresh, so that a better path, if one exists, can be

 identified.

Route_Change notification processing:

 A Route_Change notification is triggered when QoS routing detects

 that a local link currently used by a QoS path failed. Upon

 receiving such a notification, RSVP immediately unpins the current

 next hop. As in the case of reservation failure, RSVP can then

 first attempt local repair, i.e., query QoS routing for a new next

 hop. If a new next hop is returned by QoS routing, RSVP uses it

 to replace the previous next hop, marks it as pinned, and forwards

 a PATH message towards the new next hop. If QoS routing responds

 that no path to the destination is available or if local repair is

 not attempted, RSVP sends upstream a PATH _ERR message with the

 QoS_Path_Failure Error Code and an Error Value specifying "Link

 failure".

PATH_ERR message processing:

 The only modification is, as mentioned above, to recognize the new

 QoS_Path_failure Error Code and unpin the associated next hop. This

 forces a fresh QoS route query during the processing of the next PATH

 refresh.

Guerin, et al. Expires 30 September 1997 [Page 34]

Internet Draft QoS Routing Mechanisms 25 March 1997

RESV_ERR message processing:

 There are no changes to RESV_ERR processing.

F.3. Impact of QoS Routing on the Data Path

 The use of QoS routing only affects the choice of a data path and not

 how the actual forwarding of data packet takes place. Nevertheless,

 there is an important aspect that needs to be noted. Specifically,

 while PATH messages are immediately forwarded onto the next hop

 returned by QoS routing, the same need not apply to data packets.

 This is because of the potential for transient loops in QoS paths.

 Forwarding PATH messages on a QoS path that may contain loops has

 minimal impact on the routers and is actually useful to detect and

 eliminate loops (more on this below). However, depending on how fast

 loops can be resolved, forwarding data packets on a QoS path may be

 best deferred until the absence of a loop has been verified.

 As a result, it is proposed that modification of the packet

 classifier in the forwarding loop that will result in data packets

 being sent towards the next hop specified by QoS routing, be deferred

 until the time a RESV message is received. As discussed below, the

 receipt of a RESV message also implies that loops are not present in

 the QoS path. Note that the update of classifiers at the time of

 receipt of a RESV message is consistent with when this is done using

 the current default routing. The main difference is that the actual

 flow of data packets may not start following the QoS path until after

 the classifier has been updated in the first node where the default

 and the QoS paths start differing.

 There are some drawbacks with the above approach, e.g., inability to

 take advantage of partial reservations in some instances, and they

 can be addressed in a number of ways. One possibility, that may be

 acceptable if transient loops are detected and removed quickly, is

 to actually update classifiers upon receipt of a PATH message (or a

 certain number of PATH messages, when it appears that the QoS path

 is stable and loops are not present). Another more comprehensive

 alternative is to couple this process with the handling of policy

 information. Such a coupling is a natural step as the ability for

 users to specify how much of a partial reservation is acceptable

 to them, i.e., does one need to look for another path, is really

 a policy issue. In order to support such a coupling, policy data

 objects would have to be included in PATH, RESV, RESV_ERR, and

 PATH_ERR messages, in order to enable the local policy control

 module to assess the suitability of a QoS path. The discussion and

 description of such an approach is the subject of future work.

Guerin, et al. Expires 30 September 1997 [Page 35]

Internet Draft QoS Routing Mechanisms 25 March 1997

 For a detailed discussion of how these QoS path management rules

 within RSVP prevent loops and handle race conditions, the reader is

 referred to [GKH97].

F.4. Alternatives and Extensions

 In the path management approach described here, bulk of the

 responsibility for QoS path management, i.e., pinning and unpinning

 of next hop information, lies with RSVP. This was motivated in part

 by the need to couple path management with the RSVP soft state

 management, and by the close relation to existing RSVP processing

 rules. However, it is also possible to defer this responsibility to

 routing itself. The cost of such an approach would be the need for

 QoS routing to replicate some of the RSVP state information, e.g. ,

 store PHOP, NHOP, TSpec, etc. , for each flow, and also by requiring

 that this information be passed across the interface between RSVP and

 routing.

 Another different design approach is to rely on the inclusion of

 source (explicit) route objects, that would be carried in RSVP PATH

 messages as opaque objects and passed to QoS routing at each node.

 Such a design affords some simplification as it avoids the problem

 of loops altogether, but issues related to pinning and unpinning of

 paths (at the source) remain for the cases of reservation and link

 failures. The discussion of such a design is clearly of interest,

 but it is beyond the scope of this document.

References

 [Alm92] P. Almquist. Type of Service in the Internet Protocol

 Suite. INTERNET-RFC, Internet Engineering Task Force, July

 1992.

 [BG92] D. Bertsekas and R. G. Gallager. Data Networks. Prentice

 Hall, Englewood Cliffs, NJ, 2nd edition, 1992.

 [CGR94] B. V. Cherkassky, A. V. Goldberg, and T. Radzik. Shortest

 Paths Algorithms: Theory and Experimental Evaluation.

 In Proceedings of the 5th Annual ACM SIAM Symposium on

 Discrete Algorithms, pages 516--525, Arlington, VA, January

 1994.

 [CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.

 Introduction to Algorithms. MIT Press, Cambridge, MA,

 1990.

Guerin, et al. Expires 30 September 1997 [Page 36]

Internet Draft QoS Routing Mechanisms 25 March 1997

 [GGPS96] L. Georgiadis, R. Guerin, V. Peris, and K. N. Sivarajan.

 Efficient Network QoS Provisioning Based on per Node

 Traffic Shaping. IEEE/ACM Transactions on Networking,

 4(4):482--501, August 1996.

 [GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability.

 Freeman, San Francisco, 1979.

 [GKH97] R. Guerin, S. Kamat, and S. Herzog. QoS Path Management

 with RSVP (draft-ietf-guerin-qos-pathmgt-rsvp-00.txt).

 INTERNET-DRAFT, Internet Engineering Task Force, March

 1997.

 [Moy94] J. Moy. OSPF Version 2 - RFC No. 1583 (rfc1583.ps,txt).

 INTERNET-RFC, Internet Engineering Task Force, March 1994.

 [PG94] A. K. Parekh and R. G. Gallager. A Generalized Processor

 Sharing Approach to Flow Control in Integrated Services

 Networks: the Multiple Node Case. IEEE/ACM Transactions

 on Networking, 2:137--150, 1994.

 [Prz95] A. Przygienda. Link State Routing with QoS in ATM

 LANs. Ph.D. Thesis Nr. 11051, Swiss Federal Institute of

 Technology, April 1995.

 [RZB+96] R. Braden (Ed.), L. Zhang, S. Berson, S. Herzog, and

 S. Jamin. Resource reSerVation Protocol (RSVP) version

 1, functional specification (draft-ietf-rsvp-spec-13.ps).

 INTERNET-DRAFT, Internet Engineering Task Force - RSVP WG,

 July 1996.

 [Tan89] A. Tannenbaum. Computer Networks. Addisson Wesley, 1989.

 [Zap96] D. Zappala. RSRR: A Routing Interface for RSVP

 (draft-ietf-rsvp-routing-01.ps). INTERNET-DRAFT, Internet

 Engineering Task Force - RSVP WG, November 1996.

Authors’ Address

 Roch Guerin

 IBM T.J. Watson Research Center

 P.O. Box 704

 Yorktown Heights, NY 10598

 guerin@watson.ibm.com

 VOICE +1 914 784-7038

Guerin, et al. Expires 30 September 1997 [Page 37]

Internet Draft QoS Routing Mechanisms 25 March 1997

 FAX +1 914 784-6205

 Sanjay Kamat

 IBM T.J. Watson Research Center

 P.O. Box 704

 Yorktown Heights, NY 10598

 sanjay@watson.ibm.com

 VOICE +1 914 784-7402

 FAX +1 914 784-6205

 Ariel Orda

 Dept. Electrical Engineering

 Technion - I.I.T

 Haifa, 32000 - ISRAEL

 ariel@ee.technion.ac.il

 VOICE +011 972-4-8294646

 FAX +011 972-4-8323041

 Tony Przygienda

 FORE Systems Inc.

 174 Thorn Hill Rd

 Warrendale PA, 15086

 prz@fore.com

 Doug Williams

 IBM T.J. Watson Research Center

 P.O. Box 704

 Yorktown Heights, NY 10598

 dougw@watson.ibm.com

 VOICE +1 914 784-5047

 FAX +1 914 784-6318

Guerin, et al. Expires 30 September 1997 [Page 38]

