
07/07/00 Draft 0.1 i

 ATNP/WG2/21
IP/582

Prepared by Stéphane Tamalet

(France)

Issue on the Deflate compressed PDU format

AERONAUTICAL TELECOMMUNICATIONS NETWORK PANEL

WG2/21

Iimerick, Irlande

11-14 July, 2000

SUMMARY

The implementation of the draft 3rd edition enhancements to the mobile SNDCF (use of pre-stored
dictionaries (ICS3_13) and maintenance of the Deflate history windows (ICS3_14)) led the ProATN
A/G BIS team to deeply investigate the mechanisms of the deflate compression. This work allowed
discovering that the ProATN A/G BIS did not comply with all the baseline SARPs requirements on the
Deflate, and will not be able to interoperate with baseline SARPs compliant routeurs if deflate
compression is used. This document describes the problem existing in the current ProATN A/G BIS
implementation

STNA has the feeling that the ProATN A/G BIS may not be the only router concerned by the non-
conformance issue exposed in this document. We would like to ask the other ATN router developers to
tell us whether the implementation of the deflate compression in their software presents the same non-
conformity, and to discuss on the possible ways to deal with this issue.

This document is also proposed as an Information Paper to the next WG2 meeting. In the event where
all currently existing implementations are defective, the WG2 is invited to discuss on the possibility to
deal with this issue via a modification to the SARPS.

07/07/00 Draft 0.1 ii

07/07/00 Draft 0.1 iii

TABLE OF CONTENTS

1 INTRODUCTION 2

2 DEFLATE COMPRESSED DATA FORMAT 2

3 ERROR MADE BY THE CURRENT PROATN A/G BIS IMPLEMENTATION 4

3.1 Description of the problem 4

3.2 Discussion of potential solutions 7

3.3 Conclusion 9

4 REQUEST FOR COMMENTS 10

Issue on the Deflate compressed PDU format WG2/21

07/07/00 Draft 0.1 2

1 Introduction
The implementation of the draft 3rd edition enhancements to the mobile SNDCF (use of pre-stored
dictionaries (ICS3_13) and maintenance of the Deflate history windows (ICS3_14)) led the ProATN
A/G BIS team to deeply investigate the mechanisms of the deflate compression. This work allowed
discovering that the ProATN A/G BIS did not comply with all the baseline SARPs requirements on the
Deflate, and will not be able to interoperate with SARPs compliant routeurs if deflate compression is
used.

This document describes the problem existing in the current ProATN A/G BIS implementation, It is
organized as follows:

- In order to ease understanding the issues, section 2 includes a brief reminder of the
Deflate compressed data format.

- Section 3 explains the error made by the current ProATN A/G BIS implementation.

- Section 4 includes a request for comments to other ATN router developers and to the
ATNP WG2 experts.

2 Deflate compressed data format
A Deflate compressed packet exchanged over a mobile subnetwork comprises:

- a variable length, octet aligned, encoded data stream

- followed by a two-octet Frame Check Sum (FCS)

Encoded Data Stream FCS

The Encoded Data Stream consists of a series of "Deflate Data Blocks" of arbitrary length, as
illustrated by the figure below. Note that the last Deflate Data block may be followed by padding zeros
until the next octet boundary is reached, before the FCS.

Data Block 1 Data Block 2 Data Block 3 Padding
0

FCS

Each Deflate Data block comprises a 3-bit header (H), that indicates the compression type applied to
the data in the block, and a stream of self-delimited compressed data. This is illustrated by the figure
below:

H Compressed Data

Note that a Deflate data block does not necessarily occupy an integral number of bytes. As a
consequence, the header bits of a Deflate data block do not necessarily begin on a byte boundary.

There are 3 different types of Deflate Data blocks:

Issue on the Deflate compressed PDU format WG2/21

07/07/00 Draft 0.1 3

1. The Uncompressed Data blocks. In block of such a type, the data is not compressed at all. The
data are simply copied from the original uncompressed PDU.

The format of an uncompressed data block is represented herebelow:

H
3 bits

Padding
0

LEN NLEN LEN bytes of literal data

→ The 3-bit header is right padded with zeroes to the next octet boundary.

→ LEN (2 octets) gives the number of octets of literal data in the block (the number of octets
that have been copied from the original uncompressed PDU)

→ NLEN (2 octets) is the ones complement to the value of the LEN field

→ The end of the block comprises the LEN bytes that have been copied from the original
uncompressed PDU

An uncompressed Data Block always ends at a byte boundary.

2. The blocks compressed with fixed Huffman codes.

The format of such a block is represented in the next figure:

H Sequence of fixed Huffman codes End of Block
code

7 bits to 0

The block consists of the 3-bit header, followed by sequences of fixed (pre-determined) Huffman
codes representing either literal bytes, or <length, backward distance pairs>, and terminated by the
"End-of-Block’ Code (7 bits to 0).

Thanks to the ’end of block code’, the block is self delimiting without requiring an explicit length
indicator.

It must be noted that a block of such a type does not necessarily ends at byte boundary.

3. The blocks compressed with dynamic Huffman codes

The format of such a block is represented in the next figure:

H HLIT
5 bits

HDIST
5 bits

HCLEN
4 bits

Code
lengths

alphabet

Literal/length
alphabet

Distance
alphabet

Sequence of dynamic Huffman
codes

End of
Block
code

Following the 3-bit header, the second to the seventh field are used to convey the set of
dynamically determined Huffman code Tables. This is followed by sequences of dynamic Huffman
codes representing either literal bytes, or <length, backward distance pairs>, and terminated by the
"End-of-Block’ Code. The block is self-delimiting without requiring an explicit length indicator.

It must be noted that a block of such a type does not necessarily ends at byte boundary.

Issue on the Deflate compressed PDU format WG2/21

07/07/00 Draft 0.1 4

3 Error made by the current ProATN A/G BIS
implementation

3.1 Description of the problem
The ProATN A/G BIS bases its support of the deflate compression on the use of the public ’zlib’ code.
The ’zlib’ is the reference implementation of the deflate compression. It is a well proven, but tightly
written and complex piece of code.

The ProATN A/G BIS developers have tried to avoid, as much as possible, modifying the standard zlib
code. This allows simplifying the upgrade of the zlib in the router when a new version becomes
available. This also avoids introducing software errors in the standard compression/decompression
procedures. Therefore, whenever this is possible, the zlib is used via its standard software interface,
and internal procedures are left unmodified.

The ’zlib’ library provides in-memory deflate compression and decompression functions. For
compression, the application must provide the deflate() function with an input buffer containing the data
to be compressed and with an output buffer where the compressed data is to be stored. For
decompression, the application must provide the inflate() function with an input buffer containing the
compressed data and with an output buffer where the uncompressed data is to be stored.

Compression/decompression can be done in a single step if the input (resp. output) are large enough,
or can be done by repeated calls. In the later case, the zlib consider the new input (resp output) buffer
as the logical continuation of the preceding input buffer (i.e. the first bit of the new input (resp. output)
buffer is considered to follow directly the last bit of the preceding input buffer). In that case, the zlib
user must provide more input and/or consume the output (providing more output space) before each
call.

By default, the zlib compression procedure directly copies the compressed data in the output buffer.
However, there are 2 exceptions:

→ When the output buffer is full, the compression procedure can accept further input data to
process, however, the resulting compressed data is kept in an internal buffer of the zlib,
and not directly accessible to the zlib user. In that case, in order for the user to get the
compressed data, the compression function must be recalled providing more output space
(e.g. providing a new (void) output buffer).

→ When the resulting compressed data does not end at an octet boundary, the compression
procedure stores in the output buffer all integral bytes of compressed data but keeps the
last bits of the last octet in an internal bit buffer. These last bits will be concatenated with
the next bits of compressed data, when the compression procedure is recalled to process
further input data. We will see that these last bits can be flushed out of the zlib internal
buffer if there is no further input data to process.

The compression procedure manages the creation of Deflate Data block in a way totally opaque to the
zlib user. The zlib compression procedure may decide at any time to terminate a deflate data block and
to open a new one, depending on the best way to achieve optimal compression. There, it must be
noted that the zlib compression procedure does not necessarily terminate a Deflate Data block, when it
has finished to process an input buffer. By default, the compression procedure keeps the current
output deflate data block open, and waits for further input data to compress in the context of this block.
Hence, a Deflate Data Block can span over several subsequent output buffers.

Considering the above, when the zlib is used to compress a CLNP PDU the following occurs by
default:

Issue on the Deflate compressed PDU format WG2/21

07/07/00 Draft 0.1 5

→ If the compressed data does not fit in an integral number of octet, the last residual bits
remain stored in the zlib internal bit buffer and are not accessible to the zlib user, until a
new PDU is given to the compressor.

→ In the compressed data, the last Deflate Data Block is not terminated.

This could be a problem, to build a compressed data PDU that is compliant to the ATN SARPs.
Hopefully, the zlib compression procedure provides the user with options that allows forcing the
termination of the current compression block, and flushing that compression block to the output buffer
so that the user can get all the compressed data available so far.

The zlib option currently used by the ProATN router (and possibly the TAR) to terminate the block and
flush the data is the so-called Z_PARTIAL_FLUSH. This option appeared to be appropriate after
having tested the exchange of compressed PDUs between 2 routeurs: it was observed that PDUs
compressed at one end of the connection were always successfully uncompressed by the peer
routeur.

However, we discovered recently that the compressed PDUs resulting from the use of the
Z_PARTIAL_FLUSH option are not always structured according to the format specified in the SARPs.

It has been observed that with the Z_PARTIAL_FLUSH option,

1. The compression procedure terminates the current data block (for instance by appending an ’End
Of Block’ Symbol at the end of the compressed data),

2. Next, the procedure appends one or two empty1 Deflate Data Block(s) of the type "compressed
with fixed Huffman code". Such empty Data blocks are ten-bits long and have the following form:

H
3bits
(010)

End of
Block
code

7 bits to 0

3. Finally, the procedure copies the compressed data into the output buffer, with the exception of the
last trailing bits remaining stored in the internal zlib bit buffer if the compressed data does not fit in
an integral number of octets.

The consequences of this behaviour are the following:

1. The compressed PDUs terminate by an empty data block compressed with fixed Huffman
code, the ’End of Block’ code of which is truncated at the last byte boundary.

2. The remaining part (if any) of this truncated ’End of Block’ Symbol will be pre-pended to the
next compressed PDU.

The resulting format of a compressed PDU. exchanged between 2 ProATN routers is typically as
illustrated by the next figure (assuming that the PDU has been compressed into one single Deflate
Data block compressed with fixed Huffman code (this is generally the case)).

1 An empty Deflate data block will be totally transparent to the decompressor: its presence has no effect on the result of
decompression procedure. (A compressed PDU containing such a block will give the same result once uncompressed as the
one that would be obtained from the compressed PDU without that block).

Issue on the Deflate compressed PDU format WG2/21

07/07/00 Draft 0.1 6

Remaining
bits of the last
End of-block
Symbol of the
previous
compressed
PDU

(if any)

H Compressed data

(Sequences of Huffman codes)

End of Block
Symbol
for that
block

H First part of the
truncated End
of Block code
of that empty

block

FCS

These compressed PDUs are therefore not compliant to the format that is specified in the Sub-
Volume V. They do not start systematically with a 3-bit Header. Compliant routers will likely be unable
to decode such packets, and interoperate with the ProATN A/G BIS.

It is anecdotal to note that the same "error" was made originally when the Deflate compression method
was evaluated and validated before incorporation in the SubVolume V. The following figure is an
extract of the figure contained in the "Data Link Compression Evaluation Report" that was presented at
the ATNP/WG2/12 (IP407).

Figure 3-1 ISH PDU Convergence for Deflate

On this figure, the compressed data are always compressed within one single Deflate Data Block of
the type ’compressed with fixed Huffman codes". It can be observed that these compressed PDUs do
not all begin with the expected 3bit header set to 010 that normally indicates a PDU compressed with
fixed Huffman code. (Note: the first transmitted bit is the least significant bit of the first byte). The
following table indicates for each of the above frame, the effective location of the Deflate Data Block
header (Header bits are represented in bold).

Frame
number

First octet of the
frame (hexadecimal
representation)

First octet (reverse binary
representation - least
significant bit on the left)

Comment

1. 6A 01010110 The 3bit Header is at the front of the
PDU

2. A8 00010101 There are 2 zeroes appended before
the 3bits Header

3. 22 01000100 The 3bit Header is at the front of the
PDU

4. 80 00000010 There are 5 zeroes appended before
the 3bits Header

5. 20 00000100 There are 4 zeroes appended before
the 3bits Header

6. 88 00100010 There is one zero appended before the
3bits Header

Frame Time Source M Bit Bytes Data
1 10:22:21.6709 DTE 0 34

6a5262646061906360107167506f740d0d627475766400112ec18c0cc79898220002
2 10:22:31.6725 DTE 0 6 a889a00a8000
3 10:22:41.6749 DTE 0 4 22ac0220
4 10:22:51.6764 DTE 0 5 8008ab0008
5 10:23:01.6796 DTE 0 5 20c22a0002
6 10:23:11.6812 DTE 0 5 88b00a8000
7 10:23:21.6828 DTE 0 4 22ac0220
8 10:23:31.6844 DTE 0 5 8008ab0008
9 10:23:41.6876 DTE 0 5 20c22a0002
10 10:23:51.6892 DTE 0 5 88b00a8000
11 10:24:01.6907 DTE 0 4 22ac0220

Issue on the Deflate compressed PDU format WG2/21

07/07/00 Draft 0.1 7

According to the SARPs, the true value of the compressed PDUs resulting from this validation exercize
should have been:

3.2 Discussion of potential solutions

A potential solution to this problem was suggested by M. Duncan Roe in a mail received on the
WG2_SDM mailing list, last year. (This mail is attached in annex of this document).

In his mail, Duncan recommends the use of another flush option provided by the zlib; the so-called
Z_SYNC_FLUSH.

The Z_SYNC_FLUSH option also allows forcing the termination of the current Deflate Data Block and
flushing that compression block to the output buffer. However the way it does so differs from the
method of the Z_PARTIAL_FLUSH.

Before flushing the compressed data to the output buffer, the Z_SYNC_FLUSH terminates the current
deflate data block, and appends an extra empty "uncompressed" deflate data block.

An empty "uncompressed" block has the following form:

H
(000)

Padding
0s

LEN
(00 00)

NLEN
(FF FF)

The benefit of this method is that the insertion of empty "uncompressed" data block has the double
particularity to:

1. Be totally transparent to the decompressor: its presence has no effect on the result of
decompression procedure. (A compressed PDU containing such a block will give the same result
once uncompressed as the one that would be obtained from the compressed PDU without that
block).

2. Re-align the compressed data on an octet boundary: this is because the 3-bit Header of such a
block is followed by padding zeroes until the next byte boundary, and because the LEN and NLEN
fields have a fixed length of 2 bytes.

With a Z_SYNC_FLUSH, the zlib compression function does not need to keep trailing bits in its internal
bit buffer (the bit buffer is cleared) and, consequently, extra (remaining) bits are never prepended at
the head of the subsequent compressed packets.

Hence, with the Z_SYNC_FLUSH, the compressed PDUs are always formatted in way compliant to the
ATN SARPs (they always start at a Deflate Data block Boundary).

Frame Bytes Data
1 33 6a5262646061906360107167506f740d0d627475766400112ec18c0cc798982200 (not sure about the last 00)
2 5 6a22a80200
3 4 22ac0200
4 4 22ac0200
5 4 22ac0200
6 4 22ac0200
7 4 22ac0200
8 4 22ac0200
9 4 22ac0200
10 4 22ac0200
11 4 22ac0200

Issue on the Deflate compressed PDU format WG2/21

07/07/00 Draft 0.1 8

The downside of this option is that 4 or 5 extra octets are systematically appended to the end of the
compressed data. This is shown on the next figure which represents the expected format of a SARPs-
compliant compressed PDU beside the format of the same compressed PDU obtained as a result of
the use of the Z_SYNC_FLUSH option:

Data Block 1 … Data Block n Padding
0

FCS

Data Block 1 … Data Block n H
000

P
ad
di
ng
0

LEN
000

0

NLEN
ffff

FCS

Extra empty
uncompressed data

block

Then, the following solution was investigated as a method to obtain a compressed PDU formatted in
the way expected by the SARPS (and without modifying the zlib internal procedures):

1. Produce a compressed PDU using the Z_SYNC_FLUSH option

2. Remove from that PDU the 4 bytes "0000FFFF" corresponding to LEN and NLEN fields of the
Extra empty uncompressed data block.

The reverse procedure would be applied to decompress a received PDU (append the 4 bytes
"0000FFFF" to the PDU and submit the PDU to the zlib decompression function).

This works in most of the cases, but there are exceptions which invalidate this method.

The exception cases are when it remains less than 3 bits between the end of the compressed data
(last bit of Deflate Data Block n in the figure) and the next octet boundary (i.e. when 0, 1 or 2 padding
zeroes would be sufficient). In that cases, there is not enough space to insert the 3 -bit Header of an
empty uncompressed data block). Then, if an extra empty uncompressed data block is appended to
the compressed data, an extra null octets is inserted between the end of the compressed data end the
LEN and NLEN fields to be removed. This is illustrated by the next figure:

Data Block 1 … Data Block n P
a
d
di
n
g
0

FCS

Extra
null
octet

Data Block 1 … Data Block n H
000

Padd
ing 0

LEN
0000

NLEN
ffff

FCS

Issue on the Deflate compressed PDU format WG2/21

07/07/00 Draft 0.1 9

Hence, the suggested solution is not SARPs compliant: the use of the Z-SYNC-FLUSH option followed
by the removal of the LEN and NLEN field may produce a compressed PDU that is one (null) octet
longer that what is expected.

Mr Duncan Roe, in his mail, suggest another solution which consists, at the compression stage, in:

1. Producing a compressed PDU using the Z_SYNC_FLUSH option

2. Removing from that PDU the 4 bytes "0000FFFF" corresponding to LEN and NLEN fields of the
Extra empty uncompressed data block, and finally,

3. Removing all the last trailing null octets.

According to Duncan, it is possible to inverse the process at the decompression stage, by feeding the
decompressor with the compressed PDU and with additional null octets until we get some indication
that the decompressor is resynchonized and waits for the value of the LEN and NLEN field.

This solution gives a better compression ratio than the one obtained with the preceding solution.
However, like the preceding solution, it does not allow producing compressed PDUs which format is
compliant to the SARPs. Furthermore, this solution is not possible without modifying some parts of the
zlib code and this is what we tried to avoid.

3.3 Conclusion
After having considered the potential solutions, we came to the conclusion that implementing the
deflate compression in the ProATN Router in a way totally compliant to the SARPs is not possible
without making modifications to the standard zlib code.

The ProATN A/G BIS team decided to make the best of a bad job, and is trying to modify the zlib code
so that to make the ProATN A/G BIS compliant to the SARPs.

As far as the compression procedure is concerned, the ProATN team quickly succeeded in upgrading
the zlib code with a new flush option (the Z_ATN_FLUSH option) that allows, as requested by the
SARPs,:

1. Terminating the current Deflate Data Block,

2. Padding this block with zero bits until the next octet boundary is reached, and

3. Flushing out all the resulting compressed data, in a way that leaves the compressor ready to
process a new PDU.

On the other hand, the upgrade of the decompression procedure poses a lot of problems. After some
days of hard work on the zlib code, (and at the time this document is produced), the ProATN team did
not yet succeed in implementing an ATN specific decompression procedure that could inflate a SARPs
compliant deflate compressed PDU and then leave the decompressor ready to process a new PDU.

The ProATN team thinks that the upgrade is feasible. However, it is questioning whether such a work
is worth the effort, considering that some slight changes in the SARPs could outweigh the complexity
for implementations when modifying the standard zlib code. Also, the ProATN team is very concerned
about the fact that it will be difficult to ascertain that no error has been introduced in the standard code,
and hence, that the upgraded compression and decompression procedures works correctly in all
cases.

Issue on the Deflate compressed PDU format WG2/21

07/07/00 Draft 0.1 10

4 Request for comments
STNA has the feeling that the ProATN A/G BIS may not be the only router concerned by the non-
conformance issue exposed in this document. We would like to ask the other ATN router developers to
tell us whether the implementation of the deflate compression in their software presents the same non-
conformity, and to discuss on the possible ways to deal with this issue.

This document is also proposed as an Information Paper to the next WG2 meeting. In the event where
all currently existing implementations are defective, the WG2 is invited to discuss on the possibility to
deal with this issue via a modification to the SARPS.

Issue on the Deflate compressed PDU format WG2/21

07/07/00 Draft 0.1 11

ANNEX
(Mail received from M. Duncan Roe)

Date: 6/21/99 5:55 PM
Sender: Duncan Roe <dunc@dimstar.cvsi.com>
To: Klaus-Peter Graf <klaus.graf@unibw-muenchen.de>
cc: Tony Whyman <whyman@mwassocs.demon.co.uk>; atnp_wg2
 <atnp_wg2@cenatoulouse.dgac.fr>
bcc: Ronnie Jones
Priority: Normal
Subject: Air/Ground Data Compression

Hi Klaus-Peter,

This mail doesn’t contain a formal PDR: I seek your feedback as
to whether that would be appropriate.

As part of enhancing the EURATN Airborne ATN router package for
AIRSYS ATM here in Australia, I implemented DEFLATE compression exactly as
per the ICS SARPs including Section 5.7.6.5.4.2.5.3. I was not aware of
P1DR 98100004, so implemented "trailing zero-octet removal when the last
compression block uses static trees".

I did have to modify zlib, but only to provide the caller with
extra information during compression & decompression. On building, zlib
still passed all its self-tests.

Now that the SARPs have been changed, if they are to be changed
again then I suggest they be changed to a specify simpler method, which
gives slightly better compression even than the original SARPs and involves
fewer changes to zlib. In fact the amended zlib builds identical binaries
to the original, on systems where that is ever possible.

I suggest a change to the SARPs for two reasons:-

1. The method I detail below gives better compression with little
code complication, and

2. The current ATN implementations are using Z_PARTIAL_FLUSH
which is deprecated as at zlib-1.1.3, see zlib.h therein:-

 #define Z_PARTIAL_FLUSH 1 /* will be removed, use Z_SYNC_FLUSH
instead */

You are welcome to my patch file for zlib-1.1.3 and some test
programs. Please mail me for a copy: if there is enough interest I’ll
submit it to the ATN FTP
archive.

 Simpler Method - compression
 ======= ====== = ===========

The compressor always calls deflate() with key Z_SYNC_FLUSH. This
terminates the block with an empty Non-Compressed block. This consists of a
3-bit header "000", zero padding to the next octet boundary, then 4 octets
of value
0x0 0x0 0xff 0xff.

After calling deflate(), the compressor discards the last 4
octets (perhaps after checking that their value is as above). It then
discards all trailing zero octets. (In testing, I have seen a maximumof 3
of these). The NPDU is now ready to send (checksums excepted).

Issue on the Deflate compressed PDU format WG2/21

07/07/00 Draft 0.1 12

(The original SARPs specified to only delete a trailing null from
a static trees compression block, but we don’t now care what kind of block
it was nor how many nulls we remove).

 Simpler Method - decompression
 ======= ====== = =============

The decompressor needs to know how many zero octets to re-append.
The way it does this is to use include files to spy on the internal state
of zlib’s inflate(). It appends zero octets until the block’s bit buffer is
empty and it is waiting for the first length octet of a Non-Compressed
block.
I.e.:-

 z_stream ustrm; /* Decompression stream */

 while(((struct internal_state*)ustrm.state)->blocks->bitk||
 ((struct internal_state*)ustrm.state)->blocks->mode!=LENS) {
 --- present a null octet to inflate() ---
 }

Next, give inflate() the 4-octet {0x0,0x0,0xff,0xff} buffer. This
Will synchronise its state with that of the compresssor - the next
item will be a block header, octet-aligned.

 Nature of zlib changes
 ====== == ==== =======

The principal change is to move a bunch of declarations out of
inflate.c into the new header file infprivate.h. To avoid name clashes,
DONE BAD are renamed IDONE & IBAD in infprivate.h and inflate.c.

infutil.h is changed not to declare a dummy internal_state
structure if infprivate.h has been #include’d.

Makefile & Makefile.in are changed to reflect the new dependency
of inflate.c on infprivate.h.

 Evaluation Revisited
 ========== =========

I repeated Tony Whyman’s ISH test from his original "Data Link
Compression Evaluation Report" dated 23rd June 1997.

Every message after the first 2 is 3 octets exactly (rather than
Cycling 4,5,5,5) and they are all identical:-

 13:55:59dr@bart:~/zlib-1.1.3/atn_patch$./wrish
 6a5262646061906360107167506f740d0d627475766400112ec18c0cc7989822
 6a22a802
 22ac02
 22ac02
 22ac02
 22ac02
 22ac02
 22ac02
 22ac02
 22ac02

Compare this with how it was:-

 15:14:20dr@bart:~/zlib-1.1.3/atn_patch$./wrish

Issue on the Deflate compressed PDU format WG2/21

07/07/00 Draft 0.1 13

 6a5262646061906360107167506f740d0d627475766400112ec18c0cc79898220002
 a889a00a8000
 22ac0220
 8008ab0008
 20c22a0002
 88b00a8000
 22ac0220
 8008ab0008
 20c22a0002
 88b00a8000

Cheers ... Duncan.

