
ATNP WG3/15 WP 29

AERONAUTICAL TELECOMMUNICATIONS NETWORK PANEL

WORKING GROUP 3 (APPLICATIONS AND UPPER LAYERS)
Honolulu, USA

January 18 - 22, 1998

The Use of X.500 Protocols in ATM Data Link Technology:
ATN Directory Approach

Prepared by: G. Saccone

SUMMARY

This paper outlines the approach to the content of SV7, the X.500
Directory.

2

1. Introduction

1.1 Need for a Directory Service

1.1.1 As operating concepts develop for the ATN, the notion of an application
information server has been introduced. This server concept is mentioned in the CM
guidance material, and is currently under investigation by various states and
organizations. The server concept consists of a ground system being able to relay other
facilities’ application information to a requesting aircraft or ground system. This can lead
to operational advantages, including more efficient use of bandwidth and fewer required
connections.

1.1.2 These concepts revolve around access to an application information (i.e.,
application names and addresses) repository, either local or remote. There is not
currently an ATN application that has this capability. Package 1 CM acts as the
mechanism to actually exchange the necessary application information between an
aircraft and ground system or two ground systems, but does not provide the capability to
access an application information database. Ground-ground applications do not have an
equivalent CM function; addressing is based on a priori knowledge of addresses. Since
there is a distinct need for an application information database the concept of a directory
service is introduced.

1.1.3 This repository is also necessary due in part to the complexity of the ATN naming
and addressing scheme. Presently, FANS-1/A has a fairly simple naming and addressing
scheme. The data link applications on board an aircraft are addressed by the aircraft
flight ID. Likewise, a ground system’s data link address is directly related to its four
character facility designation. Individual applications are distinguished for both the
aircraft and ground system by the use of an Imbedded Message Identifier (IMI) within an
ACARS message header (such as “AD1” for ARINC Characteristic 745-1). Unlike
FANS-1/A, the ATN is based on OSI protocols. End systems within an aircraft are
identifed by naming corresponding to Subvolume IV and addressing corresponding to
Subvolume V. This makes naming and addressing much less intuitive for the ATN as
compared to FANS-1/A. Therefore, a priori knowledge is not easily known or calculated,
so it would make sense to store this information in a data base.

1.1.4 Distributed Directory Systems

1.1.5 Having a centralized data base for information is a convenient way to access
information. However, for large organizations this can become a daunting task.
Different locations’ information may change frequently, and keeping the information up
to date can be difficult and incur a large overhead. A distributed directory system allows
maintainence of information to be done by the local organization responsible for that
information, while still making it available to the entire system. X.500 assumes that the
information in the directory is distributed, and has provisions to handle this. For the
ATN, this means that individual countries and organizations can manage their own data
bases, while still giving the ATN community as a whole relevant information (according

3

to the access policies). In addition, contact information (such as a person in that country
or organization, along with telephone number, for example) can also be conveyed.

1.2 X.500 Introduction

1.2.1 Directory Information Base

1.2.1.1 The CCITT X.500 series of documents (and their equivalent ISO standards, ISO
9594) are a published set of specifications representing a widely distributed (but logically
centralized) information base of objects, such as users, systems, phone numbers, etc. The
information held by the Directory is collectively termed the Directory Information Base
(DIB). The DIB is made up of entries, each one of which describes a single object in the
real world (for example, “person”). Each object has a group of features which describe
that object called attributes. Each attribute in turn has a type and one or more values (for
example, the entry for the object “person” may have a “telephone-number” attribute with
one or more telephone number values). In addition, there may be one or more context
values per attribute value. These context values are used to specify information which
determines the applicability of that attribute (for example, a context would be used to tell
how a time or date value should be interpreted). Figure 1a depicts these relationships.

4

ENTRY

Attribute Attribute Attribute

Distinguished
Attribute

Value

ATTRIBUTE
Attribute

Type
Attribute
Value(s)

Attribute
Value

Attribute
Value

ATTRIBUTE
One or more per entry

ATTRIBUTE VALUE(s)
One or more per attribute

Context(s)
Context(s) Context(s)

CONTEXT(s)
zero, one or more per attribute value

Context
Type

Context
Value(s)

Fallback

CONTEXT LIST

Context Context Context

Figure 1a. DIB Entry Composition

1.2.1.2 The DIB is organized into a Directory Information Tree (DIT), which is based
upon the hierarchies among the objects in the DIB (for instance, “person” works for an
“organization” which is located within a “country”). A sample DIT is shown in Figure
1b.

5

Root

US

BostonSeattle

ABC Corp XYZ, Inc

country {c}

locality {l}

organizational {o}

person {p}

MarketingResearch

Canada

OttawaVancouver

organizational unit {ou}

XYZ Canada, Ltd

Bob Mary George

MarketingProductionProduction

Figure 1b. Sample DIT

1.2.1.3 Each object has one immediate superior object, which is located immediately
above the object in the DIT. An object may have subordinates, which are located
immediately beneath it in the DIT. Additionally, an object may have an alias in the DIT,
which is a pointer to an object entry under a different superior (see Figure 1).

1.2.1.4 The DIT also provides the mechanism for the naming of objects in the DIB. Each
entry in the Directory has a Relative Distinguished Name (RDN) that identifies an entry
(in Figure 1, {country = “US”}, {organization = “XYZ, Inc”} and {locality = “Ottawa”}
are all examples of RDNs). The sequence of RDNs all the way to a leaf, or end, node is a
distinguished name (DN). The DN is a globally unique identifier for a directory object.
In Figure 1, the DN for the research department of XYZ, Inc is {country = “US”, locality
= “Boston”, organization = “XYZ, Inc”, organizational unit = “Research”}. Note that the
alias entry for {organizational unit = “Production”} is under the Canadian company, so
there are two valid, but unique, DNs.

1.2.1.5 The Directory specifies a set of rules called the Directory schema which dictates
the types and attributes valid for DIB entries. In addition, a Directory system schema
dictates how operational information (e.g. create/modify timestamps, administrative
roles, etc) is stored in the Directory.

1.2.2 X.500 Protocols and Components

1.2.2.1 There are four kinds of protocol associated with the Directory (1993 version): the
Directory Access Protocol (DAP), Directory Systems Protocol (DSP), Directory
Information Shadowing Protocol (DISP) and the Directory Operational Binding Protocol
(DOP). These protocols provides the means for the various Directory agents—the
Directory User Agent (DUA) and Directory Service Agent (DSA) to perform operations

6

on the DIB. Figures 2 and 3 show two different views of the Directory model, and are
further explained below.

DIB

DIB

DIB

DIB

DSA1

DSA2

DSA4

DSA3

DSP

DSP

DSP

DISP

Note: DOP is not shown, but could take place between DSA pairs
DSA1-DSA2, DSA1-DSA3, DSA2-DSA4

DUA

DUAComputer-
Human I/F

Other apps
e.g. X.400

DAP

DAP

Directory

Figure 2. Directory Model

DSA3

DSA1

DSA2

DSA4

root

Figure 3. Directory Model Showing DSAs

1.2.2.2 Users access the Directory via the DUA. Note that the user can either be a human
or an application. The DAP provides the means for the DUA to communication with the
DSA. The DSA manages the information in the Directory. A directory is considered to

7

be distributed if there is more than one DSA. DSAs communicate with each other via the
DSP (for distributed directory operations, e.g. search and read as directed by a DUA
command) and DISP (for DIB replication transfers). The DOP defines the operational
relationship (i.e. administrative agreements) between pairs of cooperating DSAs. Note
that the DAP and DSP also make use of the Remote Operations Service Element (ROSE)
and Association Control Service Element (ACSE) ASEs. Note that some actions, like the
DSA interface the local DIB, is beyond the scope of the Directory.

1.2.2.3 The DUA has a number of operations it can perform with the DSA. These
include read (read, compare, abandon), search (list, search) and modify (add entry,
remove entry, modify entry, modify RDN) operations. The DSA, upon receipt of a query
from the DUA, can perform basically basically the same operations, but are predicated
with “chain” which implies that the DSA will pass on the request to as many DSAs as
necessary in order to complete the request. There is also a “referral” response, which a
DSA can return to either the requesting DSA or DUA. The referral response is used
when the DSA has knowledge of the proper DSA to contact (i.e. name and address). The
DSA or DUA that receives the referral response can then contact that DSA directly in
order to carry out the operation.

1.2.2.4 The DOP has two types of bindings that can be established: the Hierarchical
Operational Binding (HOB) and Shadow Operational Binding (SOB). The HOB governs
the relationship bewteen a pair of DSAs, such as DSA1 and DSA2 in Figure 3. Some
properties of the DIT governed by DSA1 will apply to the DIT governed by DSA2. The
HOB provides a mechanism for the subordinate DSA (e.g. DSA2) to receive any
administrative information from its superior DSA (e.g. DSA1). The SOB is responsible
for setting up the binding necessary between two DSAs so that replication can take place.
This typically involves determining the portion of the DIT to be copied as well as the
supplier and consumer DSAs. Once this binding is known, then the DISP can be used.
The DISP consists of three operations, Coordinate Shadow Update, Request Shadow
Update, and Update Shadow. These operations all involve the replication of DIT
information.

1.3 X.500 Applied to the ATN

1.3.1 In order to apply X.500 to the ATN, there are a number of design decisions that
must first be made. These include what type of information the Directory will hold, how
the information will be entered into the Directory, how the users will access the
Directory, and who administers the information (and how it is administered) in the
Directory? If these issues are not implemented consistently across the ATN Directory,
then there will be serious problems in the operation, and the result will be a Directory that
at best will only be useful to local users. These issues are described further in the
following paragraphs.

1.3.2 ATN Information in the Directory

8

1.3.2.1 The ATN Directory will need to hold all information that have utility to the users
of the ATN. In addition, there may be information that is only useful on a local basis, but
needs to be included. This information is determined by the the DIT along with the
corresponding object classes and attribute definitions for each node of the DIT. This
information is described in Section 3 of this document.

1.3.3 ATN Directory Information Updates

1.3.3.1 Another aspect of the ATN Directory that needs standardization is how
information is entered into the Directory itself. This will most likely be administered on
a local level, but certain aspects of the information should be made available to all users,
such as who entered or modified the data, the date and time of the modification, etc. This
is discussed in Sections 4 and 5 of this document.

1.3.4 ATN Directory Access

1.3.4.1 The ATN Directory Access encompasses two main issues: First, how will the
information from the Directory be retrieved by users. Information can be obtained both
by other applications (e.g., an extension to CM to retrieve requested information in
response to a logon request) or by users (e.g., a human requesting AIDC information for a
specific area). This is discussed in Section 6 of this document. The second consideration
is what kind of access controls (administrative and security) will need to be put in place
to ensure that access to the Directory itself is only granted to properly authorized users.
This is discussed in Sections 2 and 5 of this document.

1.3.5 ATN Directory Administration

1.3.5.1 The Directory is capable of supporting a wide range of administration models. To
a large extent administration will be locally administered. However, there will need to
minimum consistent strategy in order to ensure that changing information has been
accounted for. The administrator of the Directory will also need to ensure that
appropriate replication information is propagated to the appropriate users, taking into
account performance and backup issues (i.e. handle the DISP parameters). This is
discussed in Sections 2, 4 and 5 of this document.

1.3.5.2 Conceptual ATN Directory

1.3.5.3 The ATN Directory will look conceptually like Figure 4 below. Note that the
DIBs in Figure 4 are ATN DIB fragments, and collectively make up the ATN DIB.

9

DIB

DIB

DIB

DIB

DSA

DSA

DSA

DSA

DUA

DUAAIDC

CM

ATN Directory

DUA

DUA AIDC

CM

DUA
X.400,
CHI,
Other

X.400,
CHI,
Other

Ground System

Aircraft

Airline Ground System

Figure 4. Conceptual View of ATN Directory

2. ATN X.500 Directory Information Tree

2.1 Information for Directory

2.1.1 In order to create a Directory for the ATN, the first step is to determine what kind
of information needs to be part of the DIB, and how that relates to the DIT. As an initial
cut, the information in Table 1 needs to be conveyed (note: this is in tabular form only;
the object and attribute definitions will be fleshed out in a later section). This
information should represent a minimal set of information in order to keep the ATN
Directory relatively small and uncomplicated (i.e. a CAA’s entire phone directory should
not be included). Table 1 also proposes the Directory element which will hold this
information. This will also be explained in later sections.

Table 1. Information Contained in the ATN Directory
Type of

Information
Object Class Description

Country country Name of country where ATN end systems will be
employed

Organization organization Name of the CAA, Airline or Service Provider that
will be responsible for the ATN end system. Note that
aliases may be used so that an organization serving
more than one country (e.g. Eurocontrol or SITA) may
represented under each of the countries it serves.

Organizational
Unit

organizational
unit

This will allow for different departments of an
organization to have its own ATN end systems. For
example, certification or flight standards under a
CAA.

10

Type of
Information

Object Class Description

Country country Name of country where ATN end systems will be
employed

Locality organization,
organizational
unit

Location of organizational unit (state, province, city,
etc)

Location of
End System –
Facility
Designation/24
bit ID
(Application
Process Title)

ATN End
System

This gives the four to eight character facility
designation, or alternately in the case of an aircraft
end system, the 24 bit identifier.

Location of
End System -
Physical

ATN End
System, ATN
Application
Entity

This will tell the physical location of an ATN end
system. An example would be “CYVR, Annex”

Contact
Person(s) and
Titles

Individual
domain
subentries*

Personnel who are responsible for operation and
maintenance of ATN end systems, including alternates

Contact
Information

ATN End
System

Gives the phone numbers, fax numbers, email address,
X.400 addresses, AFTN addresses, etc of the contact
persons.

Supported
Application
Information

ATN
Application
Entity

This includes the AE Qualifiers, application addresses,
application version numbers, any build information
(e.g. for CPDLC supported message subsets, CM
server supported, etc), and subsetting details (chapter
2.x.8 of the SARPs).

Last Updated
Information,
Access control
specifics

organizational
unit, ATN End
System, ATN
Application
Entity

Includes date, time and person/organization who last
updated directory information. Also includes what
kind of access and operation restrictions apply to data.

End System
Service Area

organizational
unit, ATN End
System

Facility designations or ICAO regions that the
identified end system serves

tbd –
pariticularly g-
g/X.400 needs
tbd – X.509
stuff
*Note – this means it is up to local implementation. This decision needs to be reviewed.

2.1.2 Once that all needed information is identified, that information must be placed as
entries in the DIT. In order to do this, the entries must be broken down into object form,

11

with the appropriate object classes, attributes, and attribute syntaxes assigned. Currently,
it is viewed that most of the ATN information necessary for inclusion in the Directory
can fit into existing object classes and attributes as specified in X.521 and X.520,
respectively. If need be, all of the required information can fit into the existing object
classes and attributes. However, this would entail storing attribute values like version
numbers as the same part of a text string as build information (for example). Therefore,
in order to aid the search and storage characteristics (i.e. alleviate the need for extra
sofware that has to parse large text strings) of the Directory, there will need to be some
specialized object classes and attribute types specified. (Note: this is the author’s
opinion and may be revisited).

2.1.3 The object classes are country, organization, organizational-unit, application-
process and application-entity. The application-process and application-entity object
classes serve as the basis for two new object classes: aTNEndSystem and
aTNApplicationEntity, respectively. These new classes will inherit the application-
process and application-entity object classes characteristics. (Note: there are other ways
to accomplish this without creating new object classes, such as allowing objects to belong
to multiple classes. This decision may be revisited) The details of the attributes and their
corresponding ATN data mapping are given in Section 3 of this document.

2.2 Directory Information Tree

2.2.1 Based on the ATN information and object classes identified, the DIT for the ATN
Directory is depicted in Figure 5. Note that the application process and application entity
object classes are used in the DIT, since they are the structural object classes for the
newly created ones.

Root

USFrGB

CAAServ Prov

ATC Cert

Airline

Flt StndsApt Ops

country {c}

organization {o}

organizational unit {ou}

application process {cn}

application entity {cn}

AP-title

AE-qualifier
AE address

AE-qualifier
AE address

AE-qualifier
AE address

AP-title AP-title

Figure 5. Proposed ATN Directory Information Tree

12

2.2.2 A question of where organizations such as service providers should be placed in
the DIT was raised. Since service providers may not be limited to a particular country, it
might be appropriate to place the service provider at a country level rather than an
organization level (i.e. immediately under the root). This was not done for the ATN DIT
for two reasons: one, it goes against the established naming and structuring guidelines
for X.500, and two there are ways to accomplish the same virtual structure while still
adhering to the X.500 guidelines.

2.2.3 The naming convention for X.500 does allow certain organizations to be at the
level immediately under the root, but those organizations are international organizations,
which are defined as an organization whose scope and remit covers many nations and has
a quasi-governmental function. These organizations are known as “supra-national”
organizations, an example of which would be the United Nations. Service providers fall
under the “multi-national” organization category, which is defined as an organization
which operates in more than one country, but is not considered governmental. However,
the DIT shown in Figure 5 does not place restrictions on the use of aliases. These could
be used under each country that the service providers administer to point to the
respository for the information. This is depicted in Figure 6. Note that this example is
meant to illustrate the flexibility allowed by the use of aliases; or course any user of the
Directory is free to use or not use aliases as they see fit.

Root

USFrGB

Serv Prov Serv ProvServ Prov

OU1 OU2 OU3

Figure 6. Sample Alias Scheme

2.3 Administrative Domains

2.3.1 The Directory standard allows for different parts of the DIT to be administered
and managed by different authorities. This is the basis for a distributed DIB, and further
allows individual countries and organizations to dictate some of the specifics of the
administration of the DIT that applies to their own domains (this information is passed by
the HOB). An Autonomous Adminstrative Area (AAA) defines a complete break
between different administrators of the directory. For the ATN Directory, it is proposed
that each organization under the country entry serve as an Autonomous Adminstrative
Point (AAP), or the demarcation of an AAA. In addition to the AAA, another type of

13

administrative area is known as an Inner Administrative Area (IAA). An IAA is
subordinate to an AAA, and represents a adminstrative area which is still ultimately
under control of the AAA but may have some flexibility in defining its own
administration fules. The start of an IAA is depicted by an Inner Administrative Point
(IAP). The IAAs of a country are local to that country. For instance, an organization
may choose to allow each of its organizational units to excerise some control of the
adminstration, so each organizational unit entry would also be an IAP. This example is
depicted in Figure 7. Note that although the DIT under the country XYZ is ATN
compliant, the ATC inner adminstrative authority (under the CAA autonomous
adminstrative authority) has also elected to add additional entries to the DIT, which are
specific to ATC’s needs. However, any entries added must conform to the hierarchical
rule set forth in X.521 (i.e., a country can’t be subordinate to a person).

Root

XYZ

CAA

ATC Flt StndsApt Ops

country {c}

organization {o}

organizational unit {ou}

application process {cn}

application entity {cn}

AP-title

AE-qualifier
AE address

AE-qualifier
AE address

AP-title

Person

Serv Prov

person {cn}

Airline

Legend

Autonomous Administrative
Point

Inner Administrative
Point

Administrative Area
Boundary

Other Entries

IAA

IAA IAA

AAA

AAAAAA

Figure 7. ATN Adminstrative Domains

2.3.2 An adminstrative authority can act in three different roles: subschema
adminstration, access control adminstration and collective attribute adminstration. These
roles must be coordinated throught the autonomous adminstrative authority. The roles
are explained further in the following paragraphs. Their actual use by the ATN (i.e.
representation and storage in the DIT) is defined in Section 4, ATN Directory System
Schema.

2.3.3 The subschema administration dictates what can be added to the subschema; i.e.
the rules for data entry for the portion of the DIT that is under the AAA control (there is

14

no concept of an IAA subschema, since this would imply that different data represented
under the same administrative authority could be incompatible). Since the subschema
has to be compliant with the overall Directory schema, an AAA is free to add additional
entries as long as they are registered at the organizational level. The “person” entry in
Figure 7 is such an example. Any information in a subschema which is critical to the
operation of the ATN Directory should be promulgated to the rest of the ATN Directory
users (in fact, if there such information it should probably become part of the ATN
schema instead of a subschema).

2.3.4 The access control adminstration is concerned with administering a security
policy that is enforced for a particular part of the DIT. The access control adminstration
does not have be uniform across a whole organization. Taking the example in Figure 7,
ATC may have very different security requirements than flight standards or airport
operations. Therefore there could be three distince access control adminstrative areas.
Note that access control administration does not have to follow a particular adminstrative
domain; that is, the access control policy may be the same for ATC and airport operations
(both under the same access control adminstration) and different flight standards (under
its own access control adminstration).

2.3.5 Collective attribute dictates which collective attributes, or attributes that are
assigned to each entry, will be present. An example would be a facsimilie phone number
that is common to an entire adminstrative area. This phone number would then become a
part of every entry. A collective attribute defined by an AAA will be present in all IAAs,
but a collective attribute defined in an IAA will not be present in an AAA.

3. ATN X.500 Schema and Subschemas

3.1 Directory Schema Definition

3.1.1 The Directory Schema is a set of definitions and constraints concerning the
structure of the DIT. This includes the possible ways entries are named, the information
that can be held in an entry, the attributes used to represent that information, their
organization into hierarchies to facilitate search and retrieval, and the ways in which
values of attributes may be matched in attribute value and matching rule assertions.
Thus, the schema is the rule book of the Directory, and ensures that a country name is not
placed in an organizational entry or that an organization is not listed in a DIT as a
subordinate to a person.

3.1.2 Formally, the Directory Schema comprises a set of:

a) Name Form definitions that define primitive naming relations for structural
object classes,

b) DIT Structure Rule definitions that define the names that entries may have
and the ways in which the the entries may be related to one another in the
DIT,

15

c) DIT Content Rule definitions that extend the specification of allowable
attributes for entries beyond those indicated by the structural object classes
of the entries,

d) Object Class definitions that define the basic set of mandatory and optional
attributes that shall be present, and may be present, respectively, in an entry
of a given class, and which indicate the kind of object class that is being
defined,

e) Attribute Type definitions that identify the object identifier by which an
attribute is known, its syntax (specified in ASN.1), associated matching
rules, whether it is an operational attribute and if so its type, whether it is a
collective attribute, whether it is permitted to have multiple values and
whether or not it is derived from another attribute type,

f) Matching Rule definitions that define matching rules, and

g) DIT Context Use definitions that govern the context types that may be
associated with attribute values of any particular attribute type.

3.1.3 Figure 8 illustrates the relationships between schema and subschema definitions
on the one side, and the DIT, directory entries, attributes, and attribute values on the
other.

ASN.1 Type
Matching Rule

Attribute Types

Name Form
DIT Content Rule

Object Class

Subschema
DIT Structure Rule

Directory Schema DIT

Subschema
Administrative

Areas

Entries

Attributes

Values

uses

uses

use

use

rules for

rules for

rules for

rules for

rules for

belong to

belong to

belong to

belong to

Figure 8. Directory Schema Relationships

3.1.4 The ATN Directory will mainly use X.521 and X.520 standard object types and
attributes. Therefore, a list of the object classes and interpretation of their attributes and

16

attribute syntaxes is described next. For Subvolume 7, it is proposed not to re-copy all of
the applicable object classes, attributes, and ASN.1, but merely to refer to the appropriate
standards; it is reproduced here for the convenience of the reader. Any new object
classes, attributes and attribute syntaxes will be defined in Subvolume 7.

3.2 Object Classes Used

3.2.1 The object classes proposed for use with the ATN Directory are listed below, by
standard category.

3.2.2 X.500 Object Classes

3.2.2.1 The X.500 object classes and attributes are contained in X.521 and X.520,
respectively. Their ASN.1 is included below, along with explanatory information on
their usage for the ATN Directory. A Protocol Implementation Conformance Statement
(PICS) will be completed for the ATN Directory. In the mean time, the notes below the
object classes and attributes will explain intentions for ATN conformance (e.g., for
Organization, the MAY CONTAIN { OrganizationalAttributeSet } is mandatory for the
ATN; the attribute OrganizationalAttributeSet will have further restrictions on its
elements, and so forth). The object classes are presented in hierarchical order as in the
DIT.

3.2.2.2 Country

A Country object class is used to define country entries in the DIT.

country OBJECT-CLASS ::= {
SUBCLASS OF { top }
MUST CONTAIN { countryName }
MAY CONTAIN { description | searchGuide }
ID id-oc-country }

3.2.2.3 Organization

The Organization object class is used to define organization entries in the DIT.

organization OBJECT-CLASS ::= {
SUBCLASS OF { top }
MUST CONTAIN { organizationName }
MAY CONTAIN { OrganizationalAttributeSet }
ID id-oc-organization }

NOTE – The OrganizationalAttributeSet attribute is mandatory for the ATN.

3.2.2.4 Organizational Unit

The Organizational Unit object class is used to define entries representing subdivisions
of organizations.

17

organizationalUnit OBJECT-CLASS ::= {
SUBCLASS OF { top }
MUST CONTAIN { organizationalUnitName }
MAY CONTAIN { OrganizationalAttributeSet }
ID id-oc-organiationalUnit }

3.2.2.5 Application Process

The Application Process object class is used to define entries representing application
processes. Application Process is required to be superior to Application Entity by the
hierarchy rules of X.521, Appendix B. For the ATN, Application Process is used to
convey the AP-title and any relevant physical location information pertaining to an ATN
end system.

applicationProcess OBJECT-CLASS ::= {
SUBCLASS OF { top }
MUST CONTAIN { commonName }
MAY CONTAIN { description |

localityName |
organizationalUnitName |
seeAlso }

ID id-oc-applicationProcess }

NOTE – The commonName attribute will contain the AP-Title for the ATN application.

NOTE – The localityName and organizationalUnitName attributes will identify where
the ATN end system is located.

3.2.2.6 Application Entity

The Application Entity object class is used to define entries representing application
entities. For the ATN, this includes the application entity details of the individual ATN
applications.

applicationEntity OBJECT-CLASS ::= {
SUBCLASS OF { top }
MUST CONTAIN { commonName | presentationAddress }
MAY CONTAIN { description |

localityName |
organizationName |
organizationalUnitName |
seeAlso |
supportedApplicationContext }

ID id-oc-applicationEntity }

NOTE – If an application-entity is represented as a Directory object that is distinct from
an application-process, the commonName attribute is used to carry the value of the
Application Entity Qualifier.

NOTE – The presentationAddress attribute is used to carry the value of the ATN
application’s (as identified in the Application Entity Qualifier) address.

18

NOTE – The localityName and organizationalUnitName attributes will identify where
the ATN end system is located.

NOTE – The supportedApplicationContext attribute will contain application context as
specifed in Subvolume 4.

NOTE – The description attribute may describe the type of AE, subset number choice
from the set specified in SARPs, and any other special indications such as “CM server
functionality” or “CPDLC Build 1 message set supported”.

Tbd – X.509 classes

3.2.3 X.400 Object Classes

3.2.3.1 TBD

3.2.4 ATN-Specific Object Classes

3.2.4.1 ATN-Specific object classes are classes that have been created to meet unique
ATN requirements.

3.2.4.2 ATN End System

The aTNEndSystem object class is used to define entries representing ATN systems. This
object class inherits properties from the Application Process object class, and includes
additional attribute sets in order to provide contact information (telecommunication and
postal) for the facilities where the ATN end systems are actually located.

aTNEndSystem OBJECT-CLASS ::= {
SUBCLASS OF { applicationProcess }
MAY CONTAIN { description |

localeAttributeSet |
telecommunicationAttributeSet }

ID id-oc-aTNEndSystem }

3.2.4.3 ATN Application Entity

The aTNApplicationEntity object class is used to define entries representing ATN
application entities, i.e. application details. This object class inherits properties from the
Application Entity object class, and includes additional attribute sets in order to provide
application version numbers as well as any helpful descriptive information (e.g., local
software version number, which processor this AE resides on, etc).

aTNApplicationEntity OBJECT-CLASS ::= {
SUBCLASS OF { applicationEntity }

MUST CONTAIN { versionNumber }
MAY CONTAIN { description }
ID id-oc-aTNApplicationEntity }

19

3.2.4.4 More TBD

3.3 Attribute Types Used

3.3.1 The attribute types proposed for use with the ATN Directory are listed below, by
standard category. The attribute types are listed in alphabetical order. Attribute sets
(groups of attribute types) are also included.

3.3.2 X.500 Standard Attributes and Attribute Sets

3.3.2.1 Business Category

The Business Category attribute type specifies information concerning the occupation of
some common objects, e.g. people. For example, this attribute provides the facility to
interrogate the Directory about people sharing the same occupation.

businessCategory ATTRIBUTE ::= {
WITH SYNTAX DirectoryString {ub-business-category}
EQUALITY MATCHING RULE caseIgnoreMatch
SUBSTRINGS MATCHING RULE caseIgnoreSubstringsMatch
ID id-at-businessCategory }

3.3.2.2 Common Name

The Common Name attribute type specifies an identifier of an object. A Common Name
is not a directory name; it is a (possibly ambiguous) name by which the object is
commonly known in some limited scope (such as an organization) and conforms to the
naming conventions of the country or culture with which it is associated.

An attribute value for common name is a string chosen either by the person or
organization it describes or the organization responsible for the object it describes for
devices and application entities. For example, a typical name of a person in an English-
speaking country comprises a personal title (e.g. Mr., Ms, Rd, Professor, Sir, Lord), a
first name, middle name(s), last name, generation qualifier (if any, e.g. Jr.) and
decorations and awards (if any, e.g. QC).

Examples:

CN = “Mr. Robin Lachlan McLeod BSc(Hons) CEng MIEE”;

CN = “Divisional Coordination Committee”;

CN = “High Speed Modem”.

Any variants should be associated with the named object as separate and alternative
attribute values.

Other common variants should also be admitted, e.g. use of a middle name as a preferred
first name; use of “Bill” in place of “William”, etc.

commonName ATTRIBUTE ::= {

20

SUBTYPE OF name
WITH SYNTAX DirectoryString {ub-common-name}
ID id-at-commonName }

3.3.2.3 Country Name

The Country Name attribute type specifies a country. When used as a component of a
directory name, it identifies the country in which the named object is physically located
or with which it is associated in some other important way.

An attribute value for country name is a string chosen from ISO 3166.

countryName ATTRIBUTE ::= {
SUBTYPE OF name
WITH SYNTAX CountryName
SINGLE VALUE TRUE
ID id-at-countryName }

3.3.2.4 Description

The Description attribute type specifies text which describes the associated object.
For example, the object “Standards Interest” might have the associated description
“distribution list for exchange of information about intra-company standards
development”.

An attribute value for Description is a string.

description ATTRIBUTE ::= {
WITH SYNTAX DirectoryString {ub-description}
EQUALITY MATCHING RULE caseIgnoreMatch
SUBSTRINGS MATCHING RULE caseIgnoreSubstringsMatch
ID id-at-description }

3.3.2.5 Destination Indicator

The Destination Indicator attribute type specifies (according to CCITT Recommendation
F.1 and CCITT Recom-mendation F.31) the country and city associated with the object
(the addressee) needed to provide the Public Telegram Service.

An attribute value for Destination Indicator is a string.
destinationIndicator ATTRIBUTE ::= {

WITH SYNTAX DestinationIndicator
EQUALITY MATCHING RULE caseIgnoreMatch
SUBSTRINGS MATCHING RULE caseIgnoreSubstringsMatch
ID id-at-destinationIndicator }

3.3.2.6 Facsimile Telephone Number

The Facsimile Telephone Number attribute type specifies a telephone number for a
facsimile terminal (and optionally its parameters) associated with an object.

21

An attribute value for the facsimile telephone number is a string that complies with the
internationally agreed format for showing international telephone numbers, CCITT
Recommendation E.123 (e.g. “+81 3 347 7418”) and an optional bit string (formatted
according to CCITT Recommendation T.30).

facsimileTelephoneNumber ATTRIBUTE ::= {
WITH SYNTAX FacsimileTelephoneNumber
ID id-at-facsimileTelephoneNumber }

3.3.2.7 International ISDN Number

The International ISDN Number attribute type specifies an International ISDN Number
associated with an object.

An attribute value for International ISDN Number is a string which complies with the
internationally agreed format for ISDN addresses given in CCITT Recommendation
E.164.

internationalISDNNumber ATTRIBUTE ::= {
WITH SYNTAX InternationalISDNNumber
EQUALITY MATCHING RULE numericStringMatch
SUBSTRINGS MATCHING RULE numericStringSubstringsMatch
ID id-at-internationalISDNNumber }

3.3.2.8 Locale Attribute Set

This set of attributes is used to define those which are commonly used for search
purposes to indicate the locale of an object.

LocaleAttributeSet ATTRIBUTE ::= {
localityName |
stateOrProvinceName |
streetAddress }

3.3.2.9 Locality Name

The Locality Name attribute type specifies a locality. When used as a component of a
directory name, it identifies a geographical area or locality in which the named object is
physically located or with which it is associated in some other important way.
An attribute value for Locality Name is a string, e.g. L = “Edinburgh”.

localityName ATTRIBUTE ::= {
SUBTYPE OF name
WITH SYNTAX DirectoryString {ub-locality-name}
ID id-at-localityName }

3.3.2.10 OrganizationName

The OrganizationName attribute type specifies an organization. When used as a
component of a directory name it identifies an organization with which the named object
is affiliated.

22

An attribute value for OrganizationName is a string chosen by the organization (e.g. O =
“Scottish Telecom-munications plc”). Any variants should be associated with the named
Organization as separate and alternative attribute values.

organizationName ATTRIBUTE ::= {
SUBTYPE OF name
WITH SYNTAX DirectoryString {ub-organization-name}
ID id-at-organizationName }

3.3.2.11 Organizational Attribute Set

This set of attributes is used to define the attributes that an organization or organizational
unit may typically possess.

OrganizationalAttributeSet ATTRIBUTE ::= {
description |
LocaleAttributeSet |
PostalAttributeSet |
TelecommunicationAttributeSet |
businessCategory |
seeAlso |
searchGuide |
userPassword }

NOTE – The userPassword attribute is defined by X.509.

3.3.2.12 Organizational Unit Name

The Organizational Unit Name attribute type specifies an organizational unit. When used
as a component of a directory name it identifies an organizational unit with which the
named object is affiliated.

The designated organizational unit is understood to be part of an organization designated
by an OrganizationName attribute. It follows that if an Organizational Unit Name
attribute is used in a directory name, it must be associated with an OrganizationName
attribute.

An attribute value for Organizational Unit Name is a string chosen by the organization of
which it is part (e.g. OU = “Technology Division”). Note that the commonly used
abbreviation “TD” would be a separate and alternative attribute value.

Example:

O = “Scottel”, OU = “TD”

organizationalUnitName ATTRIBUTE ::= {
SUBTYPE OF name
WITH SYNTAX DirectoryString {ub-organizational-unit-name}
ID id-at-organizationalUnitName }

3.3.2.13 Physical Delivery Office Name

23

The Physical Delivery Office Name attribute type specifies the name of the city, village,
etc. where a physical delivery office is situated.

An attribute value for Physical Delivery Office Name is a string.

physicalDeliveryOfficeName ATTRIBUTE ::= {
WITH SYNTAX DirectoryString {ub-physical-office-name}
EQUALITY MATCHING RULE caseIgnoreMatch
SUBSTRINGS MATCHING RULE caseIgnoreSubstringsMatch
ID id-at-physicalDeliveryOfficeName }

3.3.2.14 Postal Address

The Postal Address attribute type specifies the address information required for the
physical delivery of postal messages by the postal authority to the named object.

An attribute value for Postal Address will be typically composed of selected attributes
from the MHS Unformatted Postal O/R Address version 1 according to CCITT
Recommendation F.401 and limited to 6 lines of 30 characters each, including a Postal
Country Name. Normally the information contained in such an address could include an
addressee’s name, street address, city, state or province, postal code and possibly a Post
Office Box number depending on the specific requirements of the named object.

postalAddress ATTRIBUTE ::= {
WITH SYNTAX PostalAddress
EQUALITY MATCHING RULE caseIgnoreListMatch
SUBSTRINGS MATCHING RULE caseIgnoreListSubstringsMatch
ID id-at-postalAddress }

3.3.2.15 Postal Attribute Set

This set of attributes is used to define those which are directly associated with postal
delivery.

PostalAttributeSet ATTRIBUTE ::= {
physicalDeliveryOfficeName |
postalAddress |
postalCode |
postOfficeBox |
streetAddress }

3.3.2.16 Postal Code

The Postal Code attribute type specifies the postal code of the named object. If this
attribute value is present it will be part of the object’s postal address.

An attribute value for Postal Code is a string.

postalCode ATTRIBUTE ::= {
WITH SYNTAX DirectoryString {ub-postal-code}
EQUALITY MATCHING RULE caseIgnoreMatch
SUBSTRINGS MATCHING RULE caseIgnoreSubstringsMatch
ID id-at-postalCode }

24

3.3.2.17 Post Office Box

The Post Office Box attribute type specifies the Post Office Box by which the object will
receive physical postal delivery. If present, the attribute value is part of the object’s postal
address.

postOfficeBox ATTRIBUTE ::= {
WITH SYNTAX DirectoryString {ub-post-office-box}
EQUALITY MATCHING RULE caseIgnoreMatch
SUBSTRINGS MATCHING RULE caseIgnoreSubstringsMatch
ID id-at-postOfficeBox }

3.3.2.18 Preferred Delivery Method

The Preferred Delivery Method attribute type specifies the object’s priority order
regarding the method to be used for communicating with it.

preferredDeliveryMethod ATTRIBUTE ::= {
WITH SYNTAX SEQUENCE OF INTEGER {

ny-delivery-method (0),
mhs-delivery (1),
physical-delivery (2),
telex-delivery (3),
teletex-delivery (4),
g3-facsimile-delivery (5),
g4-facsimile-delivery (6),
ia5-terminal-delivery (7),
videotex-delivery (8),
telephone-delivery (9) }

SINGLE VALUE TRUE
ID id-at-preferredDeliveryMethod }

3.3.2.19 Presentation Address

The Presentation Address attribute type specifies a presentation address associated with
an object representing an OSI application entity.

An attribute value for Presentation Address is a presentation address as defined in ISO
7498.

presentationAddress ATTRIBUTE::= {
WITH SYNTAX PresentationAddress
EQUALITY MATCHING RULE presentationAddressMatch
SINGLE VALUE TRUE
ID id-at-presentationAddress }

3.3.2.20 Registered Address

The Registered Address attribute type specifies a mnemonic for an address associated
with an object at a particular city location. The mnemonic is registered in the country in
which the city is located and is used in the provision of the Public Telegram Service
(according to CCITT Recommendation F.1).

registeredAddress ATTRIBUTE ::= {

25

SUBTYPE OF postalAddress
WITH SYNTAX PostalAddress
ID id-at-registeredAddress }

3.3.2.21 Search Guide

The Search Guide attribute type specifies information of suggested search criteria which
may be included in some entries expected to be a convenient base-object for the search
operation, e.g. country or organization.

Search criteria consist of an optional identifier for the type of object sought and
combinations of attribute types and logical operators to be used in the construction of a
filter. It is possible to specify for each search criteria item the matching level, e.g.
approximate match.

The Search Guide attribute may recur to reflect the various types of requests, e.g. search
for a Residential Person or an Organizational Person, which may be fulfilled from the
given base-object where the Search Guide is read.

searchGuide ATTRIBUTE ::= {
WITH SYNTAX Guide
ID id-at-searchGuide }

Guide ::= SET {
objectClass [0] OBJECT-CLASS.&id OPTIONAL,
criteria [1] Criteria }

Criteria ::= CHOICE {
type [0] CriteriaItem,
and [1] SET OF Criteria,
or [2] SET OF Criteria,
not [3] Criteria }

CriteriaItem ::= CHOICE {
equality [0] AttributeType,
substrings [1] AttributeType,
greaterOrEqual [2] AttributeType,
lessOrEqual [3] AttributeType,
approximateMatch [4] AttributeType }

Example:
The following is a potential value of the Search Guide attribute that could be stored in
entries of object class Locality to indicate how entries of object class Residential Person
might be found:

residential-person-guide Guide ::= {
objectClass residentialPerson.&id,
criteria and : {

type : substrings : commonName.&id,
type : substrings : streetAddress.&id }}

The construction of a filter from this value of Guide is straightforward.
Step (1) produces the intermediate Filter value

intermediate-filter Filter ::=
and : {

item : substrings {
type commonName.&id,
strings { any : teletexString : ìDuboisî }},

26

item : substrings {
type streetAddress.&id,
strings { any : teletexString ìHugoî }}}

Step (2) produces a filter for matching Residential Person entries in the subtree:

residential-person-filter Filter ::=
and : {

item : equality : {
type objectClass.&id,
assertion residentialPerson.&id },

intermediateFilter }

3.3.2.22 See Also

The See Also attribute type specifies names of other Directory objects which may be
other aspects (in some sense) of the same real world object.

An attribute value for See Also is a distinguished name.

seeAlso ATTRIBUTE ::= {
SUBTYPE OF distinguishedName
ID id-at-seeAlso }

3.3.2.23 State or Province Name

The State or Province Name attribute type specifies a state or province. When used as a
component of a directory name, it identifies a geographical subdivision in which the
named object is physically located or with which it is associated in some other important
way.

An attribute value for State or Province Name is a string, e.g. S = “Ohio”.

stateOrProvinceName ATTRIBUTE ::= {
SUBTYPE OF name
WITH SYNTAX DirectoryString {ub-state-name}
ID id-at-stateOrProvinceName }

3.3.2.24 Street Address

The Street Address attribute type specifies a site for the local distribution and physical
delivery in a postal address, i.e. the street name, place, avenue, and the house number.
When used as a component of a directory name, it identifies the street address at which
the named object is located or with which it is associated in some other important way.

An attribute value for Street Address is a string, e.g. “Arnulfstraße 60”.

streetAddress ATTRIBUTE ::= {
WITH SYNTAX DirectoryString {ub-street-address}
EQUALITY MATCHING RULE caseIgnoreMatch
SUBSTRINGS MATCHING RULE caseIgnoreSubstringsMatch
ID id-at-streetAddress }

27

3.3.2.25 Supported Application Context

The Supported Application Context attribute type specifies the object identifier(s) of
application context(s) that the object (an OSI application entity) supports.

supportedApplicationContext ATTRIBUTE ::= {
WITH SYNTAX OBJECT IDENTIFIER
EQUALITY MATCHING RULE objectIdentifierMatch
ID id-at-supportedApplicationContext }

3.3.2.26 Telecommunication Attribute Set

This set of attributes is used to define those which are commonly used for business
communications.

TelecommunicationAttributeSet ATTRIBUTE ::= {
facsimileTelephoneNumber |
internationalISDNNumber |
telephoneNumber |
teletexTerminalIdentifier |
telexNumber |
preferredDeliveryMethod |
destinationIndicator |
registeredAddress |
x121Address }

3.3.2.27 Telephone Number

The Telephone Number attribute type specifies a telephone number associated with an
object.

An attribute value for Telephone Number is a string that complies with the internationally
agreed format for showing international telephone numbers, CCITT Recommendation
E.123 (e.g. “+ 44 582 10101”).

telephoneNumber ATTRIBUTE ::= {
WITH SYNTAX TelephoneNumber
EQUALITY MATCHING RULE telephoneNumberMatch
SUBSTRINGS MATCHING RULE telephoneNumberSubstringsMatch
ID id-at-telephoneNumber }

3.3.2.28 Teletex Terminal Identifier

The Teletex Terminal Identifier attribute type specifies the Teletex terminal identifier
(and, optionally, parameters) for a teletex terminal associated with an object.

An attribute value for Teletex Terminal Identifier is a string which complies with CCITT
Recommendation F.200 and an optional set whose components are according to CCITT
Recommendation T.62.

teletexTerminalIdentifier ATTRIBUTE ::= {
WITH SYNTAX TeletexTerminalIdentifier
ID id-at-teletexTerminalIdentifier }

28

3.3.2.29 Telex Number

The Telex Number attribute type specifies the telex number, country code, and
answerback code of a telex terminal associated with an object.

telexNumber ATTRIBUTE ::= {
WITH SYNTAX TelexNumber
ID id-at-telexNumber }

3.3.2.30 X.121 Address

The X.121 Address attribute type specifies an address as defined by CCITT
Recommendation X.121 associated with an object.

x121Address ATTRIBUTE ::= {
WITH SYNTAX X121Address
EQUALITY MATCHING RULE numericStringMatch
SUBSTRINGS MATCHING RULE numericStringSubstringsMatch
ID id-at-x121Address }

3.3.3 X.400 Attributes and Attribute Sets

3.3.4 TBD

3.3.5 ATN-Specific Attributes and Attribute Sets

3.3.5.1 The attribute types that are ATN specific are given below.

3.3.5.2 Version Number

The verionNumber attribute type specifies an ATN application’s version number.

versionNumber ATTRIBUTE ::= {
WITH SYNTAX VersionNumber
EQUALITY MATCHING RULE numericStringMatch
SUBSTRINGS MATCHING RULE numericStringSubstringsMatch
ID id-at-versionNumber }

29

3.3.5.3 More TBD (for example, AFTN address? Email address?)

3.4 Attribute Syntaxes Used

3.4.1 The attribute syntaxes proposed for use with the ATN Directory are listed below,
by standard category. The attribute syntaxes are grouped by function as applicable, and
listed in alphabetical order.

3.4.1.1 X.500 Attribute Syntaxes

--general

countryName ATTRIBUTE ::= {
SUBTYPE OF name
WITH SYNTAX PrintableString (SIZE (2)) -- IS 3166 codes only
SINGLE VALUE TRUE
ID id-at-countryName }

destinationIndicator ATTRIBUTE ::= {
WITH SYNTAX PrintableString (SIZE (1..ub-destination-indicator))

-- alphabetical characters only
EQUALITY MATCHING RULE caseIgnoreMatch
SUBSTRINGS MATCHING RULE caseIgnoreSubstringsMatch
ID id-at-destinationIndicator }

DirectoryString { INTEGER : maxSize } ::= CHOICE {
teletexString TeletexString (SIZE (1..maxSize)),
printableString PrintableString (SIZE (1..maxSize)),
universalString UniversalString (SIZE (1..maxSize)) }

distinguishedName ATTRIBUTE ::= {
WITH SYNTAX DistinguishedName
EQUALITY MATCHING RULE distinguishedNameMatch
ID id-at-distinguishedName }

FacsimileTelephoneNumber ::= SEQUENCE {
telephoneNumber PrintableString (SIZE(1.. ub-telephone-number)),
parameters G3FacsimileNonBasicParameters OPTIONAL}

internationalISDNNumber ATTRIBUTE ::= {
WITH SYNTAX NumericString (SIZE (1..ub-international-isdn-number))
EQUALITY MATCHING RULE numericStringMatch
SUBSTRINGS MATCHING RULE numericStringSubstringsMatch
ID id-at-internationalISDNNumber }

name ATTRIBUTE ::= {
WITH SYNTAX DirectoryString { ub-name }
EQUALITY MATCHING RULE caseIgnoreMatch
SUBSTRINGS MATCHING RULE caseIgnoreSubstringsMatch
ID id-at-name }

PostalAddress ::= SEQUENCE SIZE(1..ub-postal-line) OF DirectoryString {ub-postal-
string}

PresentationAddress ::= SEQUENCE {
pSelector [0] OCTET STRING OPTIONAL,
sSelector [1] OCTET STRING OPTIONAL,
tSelector [2] OCTET STRING OPTIONAL,
nAddresses [3] SET SIZE (1..MAX) OF OCTET STRING}

telephoneNumber ATTRIBUTE ::= {
WITH SYNTAX PrintableString (SIZE (1..ub-telephone-number))

30

EQUALITY MATCHING RULE telephoneNumberMatch
SUBSTRINGS MATCHING RULE telephoneNumberSubstringsMatch
ID id-at-telephoneNumber }

TelexNumber ::= SEQUENCE {
telexNumber PrintableString (SIZE(1..ub-telex-number)),
countryCode PrintableString (SIZE(1..ub-country-code)),
answerback PrintableString (SIZE(1..ub-answerback))}

TeletexTerminalIdentifier ::= SEQUENCE {
teletexTerminal PrintableString (SIZE(1..ub-teletex-terminal-id)),
parameters TeletexNonBasicParameters OPTIONAL}

VersionNumber::= INTEGER (1..255)

x121Address ATTRIBUTE ::= {
WITH SYNTAX NumericString (SIZE (1..ub-x121-address))
EQUALITY MATCHING RULE numericStringMatch
SUBSTRINGS MATCHING RULE numericStringSubstringsMatch
ID id-at-x121Address }

--search

searchGuide ATTRIBUTE ::= {
WITH SYNTAX Guide
ID id-at-searchGuide }

Guide ::= SET {
objectClass [0] OBJECT-CLASS.&id OPTIONAL,
criteria [1] Criteria }

Criteria ::= CHOICE {
type [0] CriteriaItem,
and [1] SET OF Criteria,
or [2] SET OF Criteria,
not [3] Criteria}

CriteriaItem ::= CHOICE {
equality [0] AttributeType,
substrings [1] AttributeType,
greaterOrEqual [2] AttributeType,
lessOrEqual [3] AttributeType,
approximateMatch [4] AttributeType}

enhancedSearchGuide ATTRIBUTE ::= {
WITH SYNTAX EnhancedGuide
ID id-at-enhancedSearchGuide }

EnhancedGuide ::= SEQUENCE {
objectClass [0] OBJECT-CLASS.&id,
criteria [1] Criteria,
subset [2] INTEGER

{ baseObject (0), oneLevel (1), wholeSubtree (2) } DEFAULT oneLevel }

3.5 Object Identifiers

3.5.1 Object identifiers can be found in X.520 and X.521, so are not reproduced below
for informational purposes.

-- Object identifier assignments --

-- Object classes
id-oc-aTNEndSystem OBJECT IDENTIFIER ::= {id-oc21}

31

id-oc-aTNApplicationEntity OBJECT IDENTIFIER ::= {id-oc22}

-- Attributes --
id-at-versionNumber OBJECT IDENTIFIER ::= {id-at61}

3.6 Matching Rules

3.6.1 Matching rules are essential to the operation of a Directory. Matching rules are
used by DSAs to select a set of entries from the DIB based on assertions concerning
attribute values held by these entries. Each matching rule needs to state the attribute
syntax that the rule applies to, the syntax of the user presented value, how the comparison
is to performed and the range of results possible (e.g. “True”, “False”, “Greater than”,
etc). The Directory recognizes five basic types of matching: present, equality,
substrings, ordering and approximate match. These types can be used on a variety of
attributes.

3.6.2 The present syntax may be used for any attribute of any type. The present match
tests for the presence of any value of a particular type. Specific equality, substrings and
ordering matching rules may be associated with an attribute type when it is defined. That
is, under what conditions are two values considered equal (is “12” equal to “1100”?), or
how is order determined (is “3” greater than “10”?). These specific rules are used when
evaluating assertions of the equality, ordering and substrings rules made using the syntax
built-in to the Directory Abstract Service. If specific rules are not provided, then
assertions made concerning these attributes are undefined. The approximateMatch
syntax supports an approximate matching rule whose definition is a local matter to a DSA
(i.e. does “Smith” equal “Smythe”?).

3.6.3 The ATN Directory will use the standard X.500 matching rules. The exact extent
of the matching rules used is TBD, but probably will be customized for the ATN to
perform searches on ATN-specific components of the Directory. For example, there may
need to be a special definition for “decscription search” for the Application Entity object
class, which will be specific to the keywords defined for ATN usage (e.g. perform a
search on “CM Server” in order to determine all of the CM implementations which
support server functionality). These specialized searching rules will be developed as the
Directory concept matures.

3.6.4 Standard X.520 matching rules are given below for information purposes.

-- Matching rules --

caseIgnoreMatch MATCHING-RULE ::= {
SYNTAX DirectoryString {ub-match}
ID id-mr-caseIgnoreMatch }

caseIgnoreOrderingMatch MATCHING-RULE ::= {
SYNTAX DirectoryString {ub-match}
ID id-mr-caseIgnoreOrderingMatch }

caseIgnoreSubstringsMatch MATCHING-RULE ::= {
SYNTAX SubstringAssertion
ID id-mr-caseIgnoreSubstringsMatch }

32

SubstringAssertion ::= SEQUENCE OF CHOICE {
initial [0] DirectoryString {ub-match},
any [1] DirectoryString {ub-match},
final [2] DirectoryString {ub-match} }
-- at most one initial and one final component

caseExactMatch MATCHING-RULE ::= {
SYNTAX DirectoryString {ub-match}
ID id-mr-caseExactMatch }

caseExactOrderingMatch MATCHING-RULE ::= {
SYNTAX DirectoryString {ub-match}
ID id-mr-caseExactOrderingMatch }

caseExactSubstringsMatch MATCHING-RULE ::= {
SYNTAX SubstringAssertion -- only the PrintableString choice
ID id-mr-caseExactSubstringsMatch }

numericStringMatch MATCHING-RULE ::= {
SYNTAX NumericString
ID id-mr-numericStringMatch }

numericStringOrderingMatch MATCHING-RULE ::= {
SYNTAX NumericString
ID id-mr-numericStringOrderingMatch }

numericStringSubstringsMatch MATCHING-RULE ::= {
SYNTAX SubstringAssertion
ID id-mr-numericStringSubstringsMatch }

caseIgnoreListMatch MATCHING-RULE ::= {
SYNTAX SEQUENCE OF DirectoryString {ub-match}
ID id-mr-caseIgnoreListMatch }

caseIgnoreListSubstringsMatch MATCHING-RULE ::= {
SYNTAX SubstringAssertion
ID id-mr-caseIgnoreListSubstringsMatch }

booleanMatch MATCHING-RULE ::= {
SYNTAX BOOLEAN
ID id-mr-booleanMatch }

integerMatch MATCHING-RULE ::= {
SYNTAX INTEGER
ID id-mr-integerMatch }

integerOrderingMatch MATCHING-RULE ::= {
SYNTAX INTEGER
ID id-mr-integerOrderingMatch }

bitStringMatch MATCHING-RULE ::= {
SYNTAX BIT STRING
ID id-mr-bitStringMatch }

octetStringMatch MATCHING-RULE ::= {
SYNTAX OCTET STRING
ID id-mr-octetStringMatch }

octetStringOrderingMatch MATCHING-RULE ::= {
SYNTAX OCTET STRING
ID id-mr-octetStringOrderingMatch }

octetStringSubstringsMatch MATCHING-RULE ::= {
SYNTAX OctetSubstringAssertion
ID id-mr-octetStringSubstringsMatch }

OctetSubstringAssertion ::= SEQUENCE OF CHOICE {

33

initial [0] OCTET STRING,
any [1] OCTET STRING,
final [2] OCTET STRING }
-- at most one initial and one final component

telephoneNumberMatch MATCHING-RULE ::= {
SYNTAX PrintableString
ID id-mr-telephoneNumberMatch }

telephoneNumberSubstringsMatch MATCHING-RULE ::= {
SYNTAX SubstringAssertion
ID id-mr-telephoneNumberSubstringsMatch }

presentationAddressMatch MATCHING-RULE ::= {
SYNTAX PresentationAddress
ID id-mr-presentationAddressMatch }

uniqueMemberMatch MATCHING-RULE ::= {
SYNTAX NameAndOptionalUID
ID id-mr-uniqueMemberMatch }

protocolInformationMatch MATCHING-RULE ::= {
SYNTAX OCTET STRING
ID id-mr-protocolInformationMatch }

uTCTimeMatch MATCHING-RULE ::= {
SYNTAX UTCTime
ID id-mr-uTCTimeMatch }

uTCTimeOrderingMatch MATCHING-RULE ::= {
SYNTAX UTCTime
ID id-mr-uTCTimeOrderingMatch }

generalizedTimeMatch MATCHING-RULE ::= {
SYNTAX GeneralizedTime

-- as per clauses 34.3 b) or c) of CCITT Rec. X.208 | ISO/IEC 8824
ID id-mr-generalizedTimeMatch }

generalizedTimeOrderingMatch MATCHING-RULE ::= {
SYNTAX GeneralizedTime

-- as per clauses 34.3 b) or c) of CCITT Rec. X.208 | ISO/IEC 8824
ID id-mr-generalizedTimeOrderingMatch }

integerFirstComponentMatch MATCHING-RULE ::= {
SYNTAX INTEGER
ID id-mr-integerFirstComponentMatch }

objectIdentifierFirstComponentMatch MATCHING-RULE ::= {
SYNTAX OBJECT IDENTIFIER
ID id-mr-objectIdentifierFirstComponentMatch }

directoryStringFirstComponentMatch MATCHING-RULE ::= {
SYNTAX DirectoryString { ub-directory-string-first-component-match }
ID id-mr-directoryStringFirstComponentMatch }

wordMatch MATCHING-RULE ::= {
SYNTAX DirectoryString {ub-match}
ID id-mr-wordMatch }

keywordMatch MATCHING-RULE ::= {
SYNTAX DirectoryString {ub-match}
ID id-mr-keywordMatch }

34

4. ATN Directory System Schema

4.1 The Directory system schema is a set of rules that control how operational
information (information concerned with the actual functioning of the Directory, not
ATC (or any other domain, for that matter) operational information) is stored in the
Directory. From an administrative perspective, user information held in the DIB is
supplemented by administrative and operational information represented by subentries
and operational attributes. Subentries contain a description of the part of the DIT to
which their collective attributes apply (note: most attributes have a collective part, but
this document did not reproduce those parts in the ASN.1 since collective attributes will
be a local issue). Operation attributes represent information used to control the operation
of the Directory (e.g. access control information) or used by the Directory to represent
some aspect of its operation (e.g. time stamp information). Since subentries and
operation attributes are parts of the system schema, they are not visible in the user
information model, although they may be made visible to adminstrators. Additionally,
some operational attributes (such as timestamps) may be made visible to users. These
concepts are depicted in Figure 9.

ADMINISTRATIVE ENTRY

User
Attributes

Operational
Attributes

SUBENTRY

SUBENTRY

ENTRY

Administrative
Area (AA)

User
Attributes

Operational
Attributes

Administrative
Point (AP)

AP

User
Attributes

Operational
Attributes

Figure 9. Administrative and Operational Entries

35

4.1.1 The Directory does not dictate which operational attributes may be held in which
entries, and only dictates some of which operational attributes must be held in subentries.
Therefore, the ATN Directory must specify the minimum set of operational attributes that
must occur in entries and subentries. Additionally, there are subschema attributes, which
apply to an AAA or an IAA. These are beyond the scope of Subvolume 7, since any
additions to the ATN DIT will be a local implementation matter. However, it may be
useful to register ATN DIT extensions with a body such as ICAO. The operational
attributes that must be included with ATN entries are detailed in Section 4.2. It is TBD if
there are additional, ATN-specific operational attributes that need to be defined (perhaps
something like a log of the last 10 user that modified an entry). The use of adminstrative
and operational entries in conjunction with the ATN Directory AAA and IAA
(specifically access control adminstration, subschema adminstration and collective
attribute adminstration) are discussed in sections 4.3- 4.5.

4.2 Directory Operational Attributes

4.2.1 The following Directory operational attributes are required to be present in the
Directory system schema. Additional attributes, such as Administrative Role, may also
be used if deemed necessary by the local user.

4.2.1.1 Create Timestamp

The Create Timestamp attribute is used to record when an entry was first created.

createTimestamp ATTRIBUTE ::= {
WITH SYNTAX GeneralizedTime

-- as per clause 34.3 b) and c) of CCITT Rec. X.20 | ISO/IEC 8824-1
EQUALITY MATCHING RULE generalizedTimeMatch
ORDERING MATCHING RULE generalizedTimeOrderingMatch
SINGLE VALUE TRUE
NO USER MODIFICATION TRUE
USAGE directoryOperation
ID id-oa-createTimestamp }

4.2.1.2 Modify Timestamp

The Modify Timestamp attribute is used to record the last time an entry was modified.

modifyTimestamp ATTRIBUTE ::= {
WITH SYNTAX GeneralizedTime

-- as per clause 34.3 b) and c) of CCITT Rec. X.208 | ISO/IEC 8824-1
EQUALITY MATCHING RULE generalizedTimeMatch
ORDERING MATCHING RULE generalizedTimeOrderingMatch
SINGLE VALUE TRUE
NO USER MODIFICATION TRUE
USAGE directoryOperation
ID id-oa-modifyTimestamp }

4.2.1.3 Creator’s Name

36

The Creator’s Name attribute is used to identify, via the distinguished name, the user that
created an entry.

creatorsName ATTRIBUTE ::= {
WITH SYNTAX DistinguishedName
EQUALITY MATCHING RULE distinguishedNameMatch
SINGLE VALUE TRUE
NO USER MODIFICATION TRUE
USAGE directoryOperation
ID id-oa-creatorsName }

4.2.1.4 Modifier’s Name

The Modifier’s Name attribute is used to identify, via the distinguished name, the user
that last modified an entry.

modifiersName ATTRIBUTE ::= {
WITH SYNTAX DistinguishedName
EQUALITY MATCHING RULE distinguishedNameMatch
SINGLE VALUE TRUE
NO USER MODIFICATION TRUE
USAGE irectoryOperation
ID id-oa-modifiersName }

4.2.1.5 Access Control Scheme

The Access Control Scheme attribute is held in an adminsitrative entry, and is used to
identify the access control scheme in force.

accessControlScheme ATTRIBUTE ::= {
WITH SYNTAX OBJECT IDENTIFIER
EQUALITY MATCHING RULE objectIdentifierMatch
SINGLE VALUE TRUE
USAGE directoryOperation
ID id-aca-accessControlScheme }

NOTE – the Access Control Scheme applies to ATN operational information only. The
actual access control scheme to be put in place is TBD, but access control itself is
described further in the following section.

4.2.1.6 Entry ACI

The Entry ACI attribute is used to control access to the entries in which they are held.

entryACI ATTRIBUTE ::= {
WITH SYNTAX ACIItem
EQUALITY MATCHING RULE directoryStringFirstComponentMatch
USAGE directoryOperation
ID id-aca-entryACI }

4.3 Access Control Aministration

4.3.1 Access control adminsitration for the ATN Directory will be reflected in the
AAAs defined in Section 2.3. The goal of access control administration is to ensure that
all properly authenticated ATN users have access to information necessary for the

37

operation and use of the ATN (e.g. application information and addresses, who that
information belongs to, etc). This means that each of the AAPs and IAPs given in
Section 2.3 will form an Access Control Specific Point (ACSP). The ACSP forms the
root of the area over which an access policy will be enforced. This means that ACSPs for
the ATN should be at the country, organization, and organizational unit level. This
allows a country to be able to control access to non-ATN standard parts of the DIT. Of
course, there is no requirement to have three different levels of access control; in fact a
state could choose to implement just one at the country level, and have the entire part of
the DIT under that country level adhere to the same access control scheme.

4.3.2 Access control is accomplished through matching lists of users’ names with the
information that they are allowed to access and the type of access they are allowed (e.g.
modify, read only, etc). As mentioned previously, access control can be tailored to
provide only access to the parts of a country’s, organization’s, or organizational unit’s
DIT that pertains to the operational use of the ATN. There are some issues that need to
be addressed, namely who are these trusted users that should be allowed free reign over
ATN information, and what kind of access should they be granted. An airline may also
want to limit the spread of information about applications on board its aircraft, in order to
conserve unwanted connection costs. These issues must be answered, but need to be
coordinated with the security subgroup so that the two schemes do not contradict on
another. Also, there may need to be additional information passed as part of the
Directory that pertains to security and access control, and this needs to be firmly known
before the details of access control can be documented.

4.4 Collective Attribute Administration

4.4.1 TBD, probably a local matter since this will merely say that a country,
organization or organizational unit is free to expand upon the base ATN DIT, and then
they become responsible for the definition of all aspects of that expansion. An exception
may be any access control-related subentry stuff.

4.5 Subschema Administration

4.5.1 See 4.4.1.

5. DSA Description

5.1 DSA Distribution Model

5.1.1 As mentioned previously and depicted in Figure 2, the information in a Directory
is managed by one or more DSAs. The DSAs manage access to the data that it controls
(the DIB), as well as performs various operations on the data either on command of a
DUA or another DSA.

5.1.2 Each entry within the DIB is administered by one, and only one, DSA’s
Administrator who is said to have administrative authority for that entry. Maintenance

38

and management of an entry takes place in a DSA administered by the administrative
authority for the entry. This DSA is the master DSA for the entry.

5.1.3 Each master DSA within the Directory holds a fragment of the DIB. The DIB
fragment held by a master DSA is described in terms of the DIT and comprises one or
more naming contexts. A naming context is a subtree of the DIT, all entries of which
have a common administrative authority and are held in the same master DSA. A naming
context starts at a vertex of the DIT (other than the root) and extends downwards to leaf
and/or non-leaf vertices. Such vertices constitute the border of the naming context. The
superior of the starting vertex of a naming context is not held in that master DSA.
Subordinates of the non-leaf vertices belonging to the border denote the start of further
naming contexts. Note that a naming context in itself is not an administrative area having
an administrative point or an explicit subtree specification; but it may coincide with an
administrative area.

5.1.4

5.2 DSA Information Model

5.3 DSA Operational Bindings

5.4 Replication Strategy

5.4.1

5.5 Security/Access Control

5.5.1 TBD in conjunction with security subgroup.

5.6 Key Distribution

5.6.1 TBD in conjunction with security subgroup.

39

6. DUA Description

6.1 CM Interface

6.1.1

6.2 AIDC Interface

6.2.1

6.3 Recommendations for Generic User Interface

6.3.1

APPENDIX A – Sample Entries

